147 research outputs found

    One-dimensional potential for image-potential states on graphene

    Get PDF
    In the framework of dielectric theory the static non-local self-energy of an electron near an ultra-thin polarizable layer has been calculated and applied to study binding energies of image-states near free-standing graphene. The corresponding series of eigenvalues and eigenfunctions have been obtained by solving numerically the one-dimensional Schr{\"o}dinger equation. Image-potential-state wave functions accumulate most of their probability outside the slab. We find that a Random Phase Approximation (RPA) for the non-local dielectric function yields a superior description for the potential inside the slab, but a simple Fermi-Thomas theory can be used to get a reasonable quasi-analytical approximation to the full RPA result that can be computed very economically. Binding energies of the image-potential states follow a pattern close to the Rydberg series for a perfect metal with the addition of intermediate states due to the added symmetry of the potential. The formalism only requires a minimal set of free parameters; the slab width and the electronic density. The theoretical calculations are compared to experimental results for work function and image-potential states obtained by two-photon photoemission.Comment: 24 pages; 10 figures. arXiv admin note: text overlap with arXiv:1301.448

    Unoccupied Topological States on Bismuth Chalcogenides

    Full text link
    The unoccupied part of the band structure of topological insulators Bi2_2Tex_{x}Se3x_{3-x} (x=0,2,3x=0,2,3) is studied by angle-resolved two-photon photoemission and density functional theory. For all surfaces linearly-dispersing surface states are found at the center of the surface Brillouin zone at energies around 1.3 eV above the Fermi level. Theoretical analysis shows that this feature appears in a spin-orbit-interaction induced and inverted local energy gap. This inversion is insensitive to variation of electronic and structural parameters in Bi2_2Se3_3 and Bi2_2Te2_2Se. In Bi2_2Te3_3 small structural variations can change the character of the local energy gap depending on which an unoccupied Dirac state does or does not exist. Circular dichroism measurements confirm the expected spin texture. From these findings we assign the observed state to an unoccupied topological surface state

    Bulk and surface electron dynamics in a p-type topological insulator SnSb2Te4

    Get PDF
    Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).-- et al.Time-resolved two-photon photoemission was used to study the electronic structure and dynamics at the surface of SnSb2Te4, a p-type topological insulator. The Dirac point is found 0.32±0.03 eV above the Fermi level. Electrons from the conduction band minimum are scattered on a time scale of 43±4 fs to the Dirac cone. From there they decay to the partly depleted valence band with a time constant of 78±5 fs. The significant interaction of the Dirac states with bulk bands is attributed to their bulk penetration depth of ∼3 nm as found from density functional theory calculations.We acknowledge partial support from the Basque Country Government, Departamento de Educacion, Universidades e Investigacion (Grant No. IT-366-07), the Spanish Ministerio de Ciencia e Innovacion (Grant No. FIS2010-19609-C02-00), the Ministry of Education and Science of Russian Federation (Grant No. 2.8575.2013), the Russian Foundation for Basic Research (Grant No. 13-02-12110_ofi_m), and Science Development Foundation under the President of the Republic of Azerbaijan [Grant No. EIF-2011-1(3)-82/69/4-M-50].Peer Reviewe

    Trapping Surface Electrons on Graphene Layers and Islands

    Full text link
    We report the use of time- and angle-resolved two-photon photoemission to map the bound, unoccupied electronic structure of the weakly coupled graphene/Ir(111) system. The energy, dispersion, and lifetime of the lowest three image-potential states are measured. In addition, the weak interaction between Ir and graphene permits observation of resonant transitions from an unquenched Shockley-type surface state of the Ir substrate to graphene/Ir image-potential states. The image-potential-state lifetimes are comparable to those of mid-gap clean metal surfaces. Evidence of localization of the excited electrons on single-atom-layer graphene islands is provided by coverage-dependent measurements

    Longitudinal intravital imaging of the retina reveals long-term dynamics of immune infiltration and its effects on the glial network in experimental autoimmune uveoretinitis, without evident signs of neuronal dysfunction in the ganglion cell layer

    Get PDF
    A hallmark of autoimmune retinal inflammation is the infiltration of the retina with cells of the innate and adaptive immune system, leading to detachment of the retinal layers and even to complete loss of the retinal photoreceptor layer. As the only optical system in the organism, the eye enables non-invasive longitudinal imaging studies of these local autoimmune processes and of their effects on the target tissue. Moreover, as a window to the central nervous system (CNS), the eye also reflects general neuroinflammatory processes taking place at various sites within the CNS. Histological studies in murine neuroinflammatory models, such as experimental autoimmune uveoretinitis (EAU) and experimental autoimmune encephalomyelitis, indicate that immune infiltration is initialized by effector CD4(+) T cells, with the innate compartment (neutrophils, macrophages, and monocytes) contributing crucially to tissue degeneration that occurs at later phases of the disease. However, how the immune attack is orchestrated by various immune cell subsets in the retina and how the latter interact with the target tissue under in vivo conditions is still poorly understood. Our study addresses this gap with a novel approach for intravital two-photon microscopy, which enabled us to repeatedly track CD4(+) T cells and LysM phagocytes during the entire course of EAU and to identify a specific radial infiltration pattern of these cells within the inflamed retina, starting from the optic nerve head. In contrast, highly motile [Formula: see text] cells display an opposite radial motility pattern, toward the optic nerve head. These inflammatory processes induce modifications of the microglial network toward an activated morphology, especially around the optic nerve head and main retinal blood vessels, but do not affect the neurons within the ganglion cell layer. Thanks to the new technology, non-invasive correlation of clinical scores of CNS-related pathologies with immune infiltrate behavior and subsequent tissue dysfunction is now possible. Hence, the new approach paves the way for deeper insights into the pathology of neuroinflammatory processes on a cellular basis, over the entire disease course

    Immunoglobulin expression in the endoplasmic reticulum shapes the metabolic fitness of B lymphocytes

    Get PDF
    The major function of B lymphocytes is to sense antigens and to produce protective antibodies after activation. This function requires the expression of a B-cell antigen receptor (BCR), and evolutionary conserved mechanisms seem to exist that ensure that B cells without a BCR do not develop nor survive in the periphery. Here, we show that the loss of BCR expression on Burkitt lymphoma cells leads to decreased mitochondrial function and impaired metabolic flexibility. Strikingly, this phenotype does not result from the absence of a classical Syk-dependent BCR signal but rather from compromised ER expansion. We show that the reexpression of immunoglobulins (Ig) in the absence of the BCR signaling subunits Igα and Igβ rescues the observed metabolic defects. We demonstrate that immunoglobulin expression is needed to maintain ER homeostasis not only in lymphoma cells but also in resting B cells. Our study provides evidence that the expression of BCR components, which is sensed in the ER and shapes mitochondrial function, represents a novel mechanism of metabolic control in B cells

    Fast fluorescence microscopy for imaging the dynamics of embryonic development

    Get PDF
    Live imaging has gained a pivotal role in developmental biology since it increasingly allows real-time observation of cell behavior in intact organisms. Microscopes that can capture the dynamics of ever-faster biological events, fluorescent markers optimal for in vivo imaging, and, finally, adapted reconstruction and analysis programs to complete data flow all contribute to this success. Focusing on temporal resolution, we discuss how fast imaging can be achieved with minimal prejudice to spatial resolution, photon count, or to reliably and automatically analyze images. In particular, we show how integrated approaches to imaging that combine bright fluorescent probes, fast microscopes, and custom post-processing techniques can address the kinetics of biological systems at multiple scales. Finally, we discuss remaining challenges and opportunities for further advances in this field

    SIGLEC1 (CD169): a marker of active neuroinflammation in the brain but not in the blood of MS patients

    Get PDF
    OBJECTIVE: We aimed to evaluate SIGLEC1 (CD169) as a biomarker in Multiple Sclerosis (MS) and Neuromyelitis optica spectrum disorder (NMOSD) and to evaluate the specificity of SIGLEC1+ myeloid cells for demyelinating diseases. METHODS: We performed flow cytometry-based measurements of SIGLEC1 expression on monocytes in 86 MS patients, 41 NMOSD patients and 31 healthy controls. Additionally, we histologically evaluated the presence of SIGLEC1+ myeloid cells in acute and chronic MS brain lesions as well as other neurological diseases. RESULTS: We found elevated SIGLEC1 expression in 16/86 (18.6%) MS patients and 4/41 (9.8%) NMOSD patients. Almost all MS patients with high SIGLEC1 levels received exogenous interferon beta as an immunomodulatory treatment and only a small fraction of MS patients without interferon treatment had increased SIGLEC1 expression. SIGLEC1+ myeloid cells were abundantly present in active MS lesions as well as in a range of acute infectious and malignant diseases of the central nervous system, but not chronic MS lesions. CONCLUSION: In our cohort, SIGLEC1 expression on monocytes was – apart from those patients receiving interferon treatment – not significantly increased in patients with MS and NMOSD, nor were levels associated with more severe disease. The presence of SIGLEC1+ myeloid cells in brain lesions could be used to investigate the activity in an inflammatory CNS lesion
    corecore