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Abstract
In the framework of dielectric theory, the static non-local self-energy of an
electron near an ultra-thin polarizable layer has been calculated and applied
to study binding energies of image-potential states near free-standing graphene.
The corresponding series of eigenvalues and eigenfunctions have been obtained
by numerically solving the one-dimensional Schrödinger equation. The image-
potential state wave functions accumulate most of their probability outside
the slab. We find that the random phase approximation (RPA) for the non-
local dielectric function yields a superior description for the potential inside
the slab, but a simple Fermi–Thomas theory can be used to get a reasonable
quasi-analytical approximation to the full RPA result that can be computed very
economically. Binding energies of the image-potential states follow a pattern
close to the Rydberg series for a perfect metal with the addition of intermediate
states due to the added symmetry of the potential. The formalism only requires a
minimal set of free parameters: the slab width and the electronic density. The
theoretical calculations are compared with experimental results for the work
function and image-potential states obtained by two-photon photoemission.
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1. Introduction

Graphene layers display a number of interesting properties and potential applications owing to
the linearly dispersing bands found near the K point in the Brillouin zone [1, 2]. However, in
order to get complete characterization of graphene, other regions in the Brillouin zone need to
be considered. In particular, unoccupied states in the vicinity of the 0 point can play a significant
role in the transport of currents [3]. Indeed, it is well known the importance of conduction band
minima valleys located around 0 in ballistic electron emission processes, where currents are
injected on a substrate under voltage-dependent matching restrictions (e.g. k‖-conservation [4])
that are relevant to design field emission transistors [5]. On the other hand, the transport of
heat also involves other regions of the Brillouin zone apart from the K point. Recently it has
been shown how the thermal conductivity of a few layers of graphene supported on silicon
dioxide depends crucially on flexural modes [6] that are sensitive to the electronic structure
around 0 [7]. Therefore, the dielectric response of very few layers of graphene is a key physical
element to effectively design devices based on graphene. The dielectric response is directly
related, and therefore can be investigated by trapping electrons in the region of unoccupied
states between the Fermi level and the vacuum level. These states, bound by their self-induced
long-range image potential, are called image-potential states [8]. The experimental [9, 10] and
theoretical [11] studies of image-potential states constitute an ideal probe to better understand
the properties of graphene layers.

The image force is a non-local effect asymptotically dominated by correlation effects [12].
In order to study the infinite Rydberg series arising from the image potential, one needs to
compute the effective one-dimensional potential, 8(z), representing the real part of the quasi-
static self-energy for an external probe charge. This self-induced potential is a continuous
function spanning from inside the material, where it represents the exchange and correlation
energy, to the vacuum region, where it should have the correct Coulomb-like asymptotic
behavior ∝ −

1
4z . Such a potential can only be obtained from a non-local spatial formalism, since

a local approach results in a correlation potential decaying exponentially in the vacuum region,
following the density behavior outside the solid [13]. For a self-consistent first-principles theory
such a non-local functional dependence requires costly numerical calculations [14]. Therefore,
it is useful and natural to search for simpler ways to obtain such an effective potential, which
is the basic ingredient needed to understand the physics of image-potential states bound by an
ultra-thin polarizable layer like graphene. The simplest of these alternatives is to introduce a
set of fitting parameters to continuously join solutions valid either inside or outside the solid.
This point of view has been taken, e.g., by Silkin et al to study image-potential states in free-
standing graphene, joining a function with the correct classical asymptotic behavior outside to
a first-principles calculation inside a graphene layer [11]. Such ab initio calculations depend
on choosing a model for the exchange and correlation potential; local density approximation
(LDA) has been employed by Silkin et al [11]. Furthermore, a very large unit cell needs setting
to minimize effects between charged periodic images (i.e. 85 Å vacuum separator was used to
reach convergence, implying a large number of plane-waves and a serious computational effort).
Finally, such a calculation needs to be supplemented by a few adjustable parameters, e.g., the
choosing of a matching point to join the inside potential to the asymptotic classical potential.

In this paper, we analyze an alternative that makes use of a minimal free parameter set
and makes a simple, flexible and accurate basis for interpreting experimental results. We use
a well-known model for the reflection of electromagnetic fields at the surface (infinite barrier
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specular model [15]) coupled with a non-local static dielectric response so the desired self-
energy can be obtained [16]. For the electrodynamics model, two free parameters are introduced,
i.e. the electronic polarizability of the thin slab, which is determined by the Fermi–Thomas
(FT) screening wavelength inside the slab (electron density of the material), and a geometrical
dimension given by the layer thickness. This approach leads in a natural way to a potential
with proper physical features: it is continuous and finite over the full spatial domain and it has
the right asymptotic behavior toward the vacuum region. Recently, Ghaznavi et al [17] have
studied the nonlinear screening of an external charge near a doped graphene layer by solving a
FT model via a nonlinear integral equation. The nonlinear image potential shows changes up to
0.2 eV with respect to the classical image potential, and supports the use of the random-phase
approximation (RPA) dielectric response for graphene. In the case of a graphene layer lying on
a metallic support, another free parameter may be introduced in this model: the wave function
penetration in the material. Image-potential states are supported in many metallic surfaces for
energies between the vacuum level and the Fermi level due to the existence of surface band gaps
that prevent the penetration of the wave function toward the bulk and allow the existence of
bound states [8]. Therefore, penetration of wave functions is determined by the band structure
of particular materials and surface orientations in a way that cannot be incorporated into our
model, except by including a free parameter that globally determines this penetration. Here
we shall first discuss two limiting cases: 0–100% penetration of the graphene layer, and then
the continuous evolution from one limit to the other. Since for image-potential states we are
interested in regions in reciprocal space with Ek near 0 and energies between the vacuum level
and the Fermi energy, it is well justified to model graphene as a polarizable electron gas with
quadratic energy dispersion, as seen from the relevant bands of graphite and graphene [11,
18–20]. A connection between the interlayer states and the image-potential states in graphite,
graphene and other carbon-based materials has been established by different groups, e.g. Silkin
et al [11], Feng et al [21] and Hu et al [22]. These authors have pointed out that such states exist
universally in two-dimensional materials.

The static dielectric response, ε(Ek), has been modeled by the RPA and by its small k
expansion, the FT approximation [23]. While the RPA yields a more accurate description of
excitation in the material, introducing the FT allows us to write the potentials as analytic
expressions or quasi-analytical ones which merely depend on the final numerical step involving
the simple integration of a function decaying quickly for large values of the argument. A
single parameter, the screening constant related to the density of states at the Fermi level,
kFT ∝

∂n0
∂µ

, fixes both the scales for energies and lengths facilitating the rescaling of results
for different materials and sizes (atomic units are used throughout the paper, except where
explicitly stated otherwise). Taking graphite as a model (2 g cm−3, 2s22p2), a typical value
for graphene is found to be kFT ≈ 1 (rs ≈ 2.5), although its precise value should depend on
factors such as doping, external potentials, etc; this is accommodated in our results through the
simple aforementioned scaling with kFT. The other parameter used to characterize a thin slab
is its width, 2d. For a single atom thick layer of graphene a reasonable value for d should be
related to the spatial extension of π carbon orbitals, d ≈ 1 au. The value of this parameter turns
out not to be critical for this work because wave functions spread over regions much larger
than d.

The theoretical results are compared with the experimental results for graphene on various
substrates. The presence of the substrate leads to charge transfer from or to the graphene which
can be described also as doping. The resulting work function change due to graphene has been
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modeled by Giovanetti et al [24, 25]. We find good agreement with the experimental data. The
doping changes the available screening charge and leads in turn to a change in the energy of
the image-potential states. The experimental data from two-photon photoemission (2PPE) are
in agreement with the calculated dependence.

2. Theoretical model

2.1. Self-induced potential by an ultra-thin slab

For an external probe charge near a slab (Q = 1) we seek the potential acting on Q by the
polarization charges induced in the medium by Q itself. This is obtained by computing the
total potential and subtracting the charge’s own naked potential. To ensure suitable boundary
conditions, and according to the specular reflection model at the surface, auxiliary pseudo-media
are introduced for the polarizable slab and the vacuum that reduce the calculation to matching
solutions obtained in different regions of space for the homogeneous media everywhere [12].
Details of the calculation for the thin slab are given in appendix A. The resulting potential
depends on a number of integrals that include the dielectric response of the system; for the RPA
these are computed numerically. On the other hand, within the FT approximation an expression
that only depends on a single numerical integration can be obtained,

8FT(z > d)= −
k2

FT

2

∫
∞

0
dκ

e−2κz

(χ + κ coth [χd]) (χ + κ tanh [χd])
(1)

8FT(0< z 6 d)=

∫
∞

0
dκ

{
χ + e4χd

(
κe2χ z + κ −χ

)
2
(
e4χd − 1

)
χ

+
κ

2χ

[
−

2κ
(
(χ + κ)e2(2d+z)χ + (χ − κ)

)
(2κ2 + k2

FT)
(
e4dχ − 1

)
+ 2κχ

(
e4dχ + 1

) +
e−2χ z + 1

e4χd − 1

−
e−2χ(d+z)

(
1 + e2χ z

)
κ
(
κ +χ

(
e2(d+z)χ + cosh [2χd]

)
csch [2χd]

)
2κχ cosh [2χd] +

(
2κ2 + k2

FT

)
sinh [2χd]

]}
, (2)

where χ =
√
κ2 + k2

FT. This is an useful expression that can be computed very efficiently. We
shall see that for the purpose of computing the energy levels of image-potential states it makes
an excellent approximation to the more costly RPA calculation.

In figure 1, we show the potential for a slab occupying the region −d 6 z 6 d, both in
the FT approximation (black continuous line), and in the RPA one (black dots). In the region
determining the Rydberg series (|z|> d), both approaches yield similar values and are in
agreement with the correct asymptotic power law. Near the center of the slab, FT overestimates
the interaction over RPA by about 30–40%,

8RPA

8FT

∣∣∣
z=0

≈ 0.82 −
rs

12.5
, 26 rs 6 6, (3)

a difference that is reflected mainly in the lowest state (node-less) that has a significant weight
in the central part of the slab where the difference between RPA and FT is larger. This state is
located outside the window between the vacuum level and the Fermi energy and is not part
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Figure 1. Self-energy, 8(z), of a unit test charge at different positions outside and
inside a thin slab (kFT = 1 and d = 1). The two thick vertical lines (black) mark the
slab region. The black continuous line corresponds to FT (equations (1) and (2)), while
black dots have been obtained using the RPA. Black dashed line: FT approximation to
RPA (k∗

FT = 0.78). Blue dotted line: asymptotic law with the image plane at z0 = −
1

kFT

(|z|> d). Dashed line (green): 8(z)+ e−20(z−b) (repulsive term) for b = d . Horizontal
dashed and dotted lines show the first four eigenvalues (red and blue for even and odd,
respectively); the horizontal thick line (brown) gives an approximate value for the work
function in graphene (4 eV).

of the image-potential state series. For d �
1

kFT
the κ integral in equations (1) and (2) can

be evaluated analytically to obtain the following useful particular values (see appendix B):
8FT(z = d)= −

kFT
3 and 8FT(z = 0)= −

kFT
2 . We remark that the latter value corresponds to the

Coulomb hole [26]. Furthermore, for z > 1
kFT

(vacuum region) the potential is well approximated
by a classical law, 1

4(z−z0)
, corrected by an image plane, z0. The value of z0 can be obtained by

expanding the integrals for κ ≈ 0, which fixes the position of the image plane in this model:
z0 = −

1
kFT

(dashed blue line in figure 1, see appendix B). Finally, equation (3) suggests a simple
procedure to find a good approximation to the RPA potential. Given a physically representative
value for kFT(rs), one can find another value, k∗

FT, such that 8RPA(kFT, d = 0)≈8FT(k∗

FT, d =

0). For the purpose of obtaining energy eigenvalues of 8RPA(kFT, z), 8FT(k∗

FT, z) is a good
approximation to the full RPA potential that can be computed quickly and easily.

2.2. Eigenvalues

We solve numerically the Schrödinger equation [27, 28] to compute the eigenvalues and
eigenfunctions corresponding to the RPA and FT model potentials described above. Quite
generally, bound states can be unequivocally labeled by the number of nodes n, with energies
increasing as the number of nodes increases. Furthermore, as long as the potential is symmetric,
eigenfunctions have either even or odd parity, for an even or odd number of nodes, n.

We show in figure 1 the first five eigenvalues for 8(z); dashed (red) and dotted (blue)
horizontal lines for even and odd parities. It is worth noting the structure of this series; there is
an isolated eigenvalue (the lowest one), while the remaining states cluster near the vacuum level.
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Table 1. Binding energies, En (eV), measured with respect to the vacuum level and
labeled according to the number of nodes in wave functions. Top three rows: results for
RPA and FT (equation (2)) are given for a free-standing graphene ultra-thin layer and
compared with similar results obtained from an ab initio LDA calculation matched to
an asymptotic expression for the image potential by Silkin et al [11] (states are labeled
according to their ordering in the image-potential series of unoccupied states lying
above the Fermi energy and below the vacuum level). The effect of a repulsive barrier
located at z ≈ −10 Å is presented under Rb−20 (notice that in this case, the symmetry
is broken and the parity is no longer a good quantum number). For comparison,
the experimental values measured on Gr/Ir are quoted [9], and compared with the
eigenvalues for the classical Whittaker’s problem [8]. Finally, we show the effect of
approaching the repulsive barrier to z ≈ 0.5 Å, Rb=1, that can also be computed by
introducing an appropriate quantum defect (δ = 0.2). To guide the eye, we highlight
in bold face numbers that can be compared across different calculations or experiments
and have been given an accompanying interpretation in the text.

Label 0 1 2 3 4 5 6 7

RPA −5.38 − 0.68 −0.36 −0.18 −0.14 −0.090
FT −7.14 −0.89 −0.44 −0.22 −0.15 −0.096 −0.074 −0.054
LDA (z0 = 5) [11] −1.29 −0.57 −0.24 −0.17 −0.11 −0.06
Rb=−20 −6.03 −0.79 −0.41 −0.19
Label 1 2 3 4
−

1
4z [8] −0.85 −0.21 −0.094 −0.053

Gr/Ir [9] −0.83 −0.19 −0.09
Rb=1 −0.57 −0.17 −0.082 −0.048
−

1
4(z+z0)

(δ = 0.2) −0.59 −0.18 −0.083 −0.048

For standard densities (e.g. 1< rs < 10) this first level appears below ∼ −4.5 eV, an estimate
for the work function in graphene (thick line). Therefore, this n = 0 eigenstate does not fit in
the standard definition for a Rydberg state, necessarily located between the vacuum and Fermi
levels to be observable in a standard experiment.

In table 1, we compare eigenenergies calculated for the RPA and FT models with similar
theoretical values obtained from a formalism based in density functional theory (DFT) [11],
and with experimental values reported for Gr/Ir [9]. We have also included, as a reference,
the limiting case of the Rydberg series for a perfect metal Em+1 = −

1
32(m+1)2 , m = 0, 1, 2, . . .,

where m refers to the number of nodes for each state (note that these wave functions only extend
to z > 0 half-space, and that the zero at the origin is not counted as a node since it derives
from the boundary conditions). Figure 2 shows on a log–log scale the scaling law for the first
few members of the series. We remark that for the purpose of computing binding energies for
image-potential states the FT model with a suitable value for k∗

FT yields values of the same
quality as those obtained from the RPA at a much lower computational cost. For the potential
created by free standing graphene, Silkin et al [11] have computed binding energies for image
states by matching an ab initio DFT model for the total energy to an asymptotic expression
for the image potential beyond some distance, z0. A pseudopotential with valence electrons
2s22p2 and a pseudoized core for 1s2 electrons has been used. In order to compare the results
from these different theoretical approaches, we align the states attending to their energies in
the same order as they appear in the image series. This labeling of states is straightforward and

6



New J. Phys. 16 (2014) 023012 P L de Andres et al
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0.1

0.2

0.4
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1
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Figure 2. Bound states energies, −En (eV), for the hydrogenic series supported by
the potential of the ultra-thin slab in figure 1 (FT: triangles up, blue; and RPA:
triangles down, red). These are compared with the experimental values for Gr/Ir
(squares, brown) [9] and Whittaker series (circles, cyan). Energies have been labeled
on the abscissa by the quantum numbers n corresponding to wave functions from the
symmetrical potential (Whittaker quantum numbers have been accordingly transformed
to n = 2 m − 1, m = 1, 2, 3, . . .).

unambiguous, and most importantly it facilitates a comparison between the different theories
and with the experimental values. On the other hand, the theoretical eigenvalues can be classified
by looking at the properties of their eigenfunctions, notably the number of nodes and for a
symmetric potential the parity. Eigenvalues corresponding to a symmetric potential like the one
plotted in figure 1 are easily classified in the same order as they appear, n, by the number of
nodes (n), and their parity (+ for even n, and − for odd n). However, the parity might become
not a good quantum number in the presence of defects or a perturbing potential modifying
the symmetry of the potential (e.g. a supporting substrate for the graphene layer), while the
ordering dictated by the number of nodes is related to the orthonormality of wave functions and
makes a robust labeling scheme. Within this ordering, the first image-potential state is simply
the first unoccupied one to lie above the Fermi energy and below the vacuum level determined
by the work function, W . In the RPA/FT model we are introducing in this paper, the first
image-potential state has been labeled n = 1 in table 1; its wave function has one node and
it is antisymmetric, E(1)RPA = −0.68 eV. In the DFT model, the first image-potential state we
find is E(1)DFT = −1.29 eV, and its wave function has two nodes and it is symmetric (labeled
in [11] as 1+). The number of nodes on this wave function has been correlated in [11] with
the occupied σ and π states below and the required orthonormality condition between them.
The discrepancy between the number of nodes and the parity on wave functions from these
two theoretical approaches is not a fundamental one. Presumably a pseudopotential including a
different core, like a simpler one constructed with only 2p2 electrons, or a more complete one
including the 1s2 electrons, would alter the number of nodes in the first unoccupied state because
the orthonormality condition for the low lying states would be different. Similarly, in our RPA
model one could imagine a scenario, where the value of kFT is so small as to make the n = 0
state the first unoccupied state, or inversely, so large as to get the n = 1 state below the Fermi
level to make the n = 2 state the first member of the series of unoccupied states. Therefore,

7
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Figure 3. First four eigenfunctions for the potential displayed as a black continuous line
in figure 1 (FT). Eigenvalues are in eV and referred to the vacuum level. For comparison,
Whittaker wave functions (n = 1, 3, dashed) and the fitted harmonic oscillator wave
function (n = 0, dotted) are shown.

we conclude that the more convenient way to compare different image series from different
theories or experiments is the ordering attending their energy, because it does not depend on
the fine details of the model being used. This criterion brings good agreement between DFT
and RPA/FT, and with experiments, which is remarkable taking into account how different
both theories are, which is something to be highlighted. Perhaps the exception is the first value
predicted by DFT, −1.29 eV, that is a bit too low. We do not take this small discrepancy seriously
since both theories involve a number of approximations and parameters (the pseudopotential
and the exchange-correlation potential for DFT; kFT and d for RPA), and it is well known the
difficulties in DFT of getting accurate values for empty states (e.g. band gaps) without including
a more sophisticated description for electron correlation, which is the physical effect responsible
for the asymptotic behavior, and one of the assets of the RPA/FT formalism.

2.3. Eigenfunctions

The similarity of the values found for the antisymmetric (odd, n−) members of the series of
states for 8(z) and the classical Rydberg series is striking, and draws some attention (third row
in table 1). Such similarity can be understood by looking at the corresponding wave functions
(figure 3). Although the wave functions for Rydberg states are spatially located mostly in the
vacuum region, the symmetric members of the series have ψ(z = 0) 6= 0 at the origin of the slab
(figure 3, the continuous line in upper-left panel). This is most conspicuous for the ground
state wave function ψ0 that is more like the ground state of a harmonic oscillator fitted to
the bottom of the potential well (8(z)≈ −0.5 + 0.13z2 au, E ′

0 = −6.2 eV) than to states in the
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one-dimensional hydrogen-like series for a semi-infinite metal that are assumed to go to zero at
the image plane.

Boundary conditions force all Whittaker wave functions to go to zero at the origin, a
condition that in the case of a symmetric well can only be fulfilled by the odd wave functions.
Moreover, if n− and m give the number of nodes for odd wave functions for the symmetric
potential and the Rydberg one, respectively, we can make a one-to-one correspondence, n−

−1
2 =

m, that simply tells us that both sets of wave functions have the same number of nodes if n−

is divided by two (only half-space) and the node at the origin is discounted. To compare with
wave functions corresponding to Whittaker’s classical problem defined only over half the space,
one might use Silkin et al’s labeling for image-potential states: a quantum number related to the
nodes of the wave functions for the symmetrical problem only on half of the space supplied
with its parity to take into account that antisymmetric wave functions add an extra node to the
count. From a physical point of view, we can envisage two relevant limits: a free standing slab
producing a symmetric potential with states labeled by the number of nodes and their parity, and
a slab on a substrate where a particular surface gap may prevent penetration of wave functions
inside the material, leaving only half the space accessible for image-potential states. In this
latter scenario, parity would not be an useful quantum number. It is reasonable to describe
the case of a graphene layer grown and supported on a particular substrate as having a place
somewhere in between these two limits depending on details such as the interaction between
the graphene layer and the support, the electronic surface structure of the combined system,
work function, etc. In what follows, we shall assume that all these details can be taken into
account in the simplest terms by a single free parameter giving the amount of penetration of
wave functions. This electrodynamics formalism is not intended to describe these details, but it
can bring useful quantitative information on the observed levels, and as a consequence, further
conceptual understanding.

This formalism predicts, for a free-standing graphene layer, the appearance of new states
associated with the even parity (e.g. eigenvalues between −0.44 and −0.36 eV for n = 2 and
between −0.15 and −0.14 eV for n = 4 in figure 2). These new states have been obtained
numerically and fit well into the classical scaling law proportional to n−2 for n up to 7.
Obviously, the symmetric potential can be perturbed by external ones (e.g. the cases of graphene
on a support), and these states would be affected accordingly.

2.4. Modeling the substrate

So far we have discussed a model that effectively represents a free-standing graphene layer. For
those cases where the graphene layer has been deposited on a metallic support the substrate is
expected to manifest itself in two main physical ways: (i) the wave functions may be constrained
to be outside some spatial region where the substrate enforces an electronic gap; and (ii) as
a consequence of the interaction between the layer and the support, some charge may be
transferred to/from the slab, modifying the density of states at the Fermi level, i.e. the value
of kFT.

To assess how sensitive the eigenvalues are to the penetration of wave functions into the
material we have added to 8(z) a repulsive term modeled as an exponential wall, Rb(z)=

e−a(z−b). Since we are only interested in creating a decaying state inside the support, we fix
the parameter a to a large value, a = 20 au, akin to the infinite hard-wall limit; its effective
role is to expel states from the z < b region, ensuring the exponential decay of wave functions

9
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Table 2. Expectation value z (Å) for Whittaker and RPA wave functions (FT results are
very similar to the RPA ones).

Whittaker 0 1 2 3 4
z 3 12 29 51 79
RPA (FT) 1 2 3 4 5 6 7 8 9
z 3 6 12 18 28 34 48 58 78

inside an electronic band gap. The resulting potential for the repulsive barrier located near the
slab surface (b = 1 au, green dashed line in figure 1) is similar to the classical series with an
image plane, 1

4(z+z0)
, and can be easily solved by introducing a quantum defect in the Rydberg

formula (compare energies for the same number of nodes in the eigenfunctions for Rb=1 and the
Whittaker series with quantum defect δ = 0.2 in table 1). The barrier, on the other hand, can be
introduced below the surface, mimicking the effect of an electronic band gap due to a supporting
substrate. The evolution of the first few eigenvalues with the position of the barrier has been
shown in the two limits in table 1. As long as the barrier is located far away from the ultra-thin
slab (e.g. b 6 20 au) we get values reminiscent from the original members for the unperturbed
symmetrical potential. At the other limit, a barrier located just on the surface very much recalls
the classical solution. For large m the eigenvalues are determined by the potential in the vacuum
region and the existence of such a barrier distorts the states less and less as they approach
the vacuum level. Table 2 gives the expectation mean values in Å, z =

∫
∞

0 ψ(z) z ψ(z) dz,
for Whittaker wave functions compared with the ones obtained for the RPA or FT potentials
(e.g. (B.2)). These values compare well with each other, which reflects the manifest similarity
between wave functions shown in figure 3, and show how the important region for the potential
moves quickly away from the surface as m grows. The fact that z � d for image-potential states
with n > 1 implies that wave functions are quite insensitive to the potential inside or near the
layer and they are mostly influenced by the asymptotic region where FT and RPA are equivalent.
This suggests that higher k-corrections to the dielectric function arising from the RPA are not
very important, at least for n > 1 states. Taking away the first level, largely affected by the
details near the bottom of the potential, the rest of the series is only modified by a percentage
comparable with the differences found in table 1 between similar entries.

The effect of doping may be explored by looking at the kFT dependence of the energies
of the image series. The important parameter of the dielectric model is the charge density of
the graphene layer, which can be related to the doping level and the work function. This is
summarized in the current formalism via a single parameter, the FT wave-vector kFT. While kFT

cannot be easily extracted in our formalism from doping levels of graphene, we can compare
with experiments by exploiting the linear dependence predicted by this theory between the
screening wave-vector and the work function of the thin slab. To compare with available
experimental results, it suffices to establish a connection between kFT and a relevant energy
scale, e.g. the distance between the vacuum level and the Fermi level, i.e. the work function,
W . To this end, we note that in our approach the work function for a semi-infinite surface, or a
slab with d � 1 Å, is −

kFT
2 in the FT model and ≈ −

kFT
3 in the RPA one. We can see that RPA,

so far our best approach, overestimates W when compared with experimental values by about
a factor ≈ 2. The linear dependence between W and kFT, on the other hand, is solidly anchored
in the theory, having its origin in the net attractive interaction between the external electrons
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Figure 4. Solid lines (red): energy of n = 1, 2 and 3 image-potential states as a function
of work function, W =

kFT
6 (eV). Large open circles (blue) show experimental results

[9, 29, 30]. For Ru the data [10] are plotted by filled circles (green) for two different
work functions: 4.00 and 4.24 eV. Data for graphite have been taken from [31].

and the polarization charges created inside the polarizable material. Therefore, W should be
proportional to αkFT, albeit the proportionality constant should be corrected to compare with
the experimental value. We take α =

1
6 , which corresponds to the empirical work function for

graphene, W0 = 4.5 eV. Therefore, the empirical dependence W =
kFT
6 allows us to translate kFT

into an experimental energy scale, and to set up an energy origin at the value W0. Figure 4 shows
the results for the first three members of the series by straight lines. The experimental data will
be discussed in section 3.

An interesting feature of this result is the fact that the higher members of the series are less
and less affected by changes in kFT (W and/or ρ(EF)). This is clearly seen in figure 4 where
the slope of ∂En(W )/∂W decreases for the higher n values. In figure 5 we plot this result, and
show that it is well fitted by the empirical function 1

6n2 . Since kFT is linearly proportional to the
density of states at the Fermi level, ρ(EF), this gives us the empirical scaling law expected for
the different terms of the image-potential state series with doping.

3. Experimental results

The theoretical results of the preceding section can be tested experimentally by 2PPE. This
technique is able to measure image-potential states with high accuracy and results for various
graphene-covered surfaces have been reported [9, 10, 29, 30]. Photoelectron spectroscopy can
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Figure 5. Scaling of the slope of ∂En(W )/∂W computed for the first three image-
potential states.

also provide precise values for the work function of the surfaces, which is correlated with the
doping level and charge density of the graphene layer. We first discuss the work function before
turning to the image-potential states.

3.1. Work function

The amount of charge transfer from the substrate to the graphene layer is determined by the
work function difference between the substrate and graphene. This situation has been modeled
with a simple capacitor model by Giovanetti et al and validated by comparing with results from
calculations for various surfaces [24, 25]. The curve plotted in figure 6 shows the calculated
work function of the graphene-covered surfaces versus the work function of the clean substrates
for the capacitor model. The calculated values plotted by green open squares fit the curve
quite well [24, 25]. The available experimental data are shown by blue open circles [9, 10,
29, 30, 32, 33]. The size of the circles represents approximately typical experimental error
bars. The curve was fitted to the experimental results for the noble-metal surfaces [29] and
monolayer graphene on SiC [30]. The fit was done with the work function of graphene of
4.50 eV compared to 4.48 eV in the original work [24, 25]. The chemical shift was reduced
from 0.90 to 0.89 eV. Overall the fit of this work describes also the calculated values (green
open squares in figure 6) very well. The surfaces included in the fit all have a graphene–metal
distance of around 3.4 Å [34–38]. The surfaces of Ni, Ru and Pd were not included in the fit
and are shown by blue dashed circles. They have shorter graphene–metal distances [24, 25, 39]
and would require a larger chemical shift for a satisfactory description. The capacitor model
provides a meaningful measure to compare different surfaces with comparable graphene–metal
distances via the work function. In addition, the work function for graphene-covered surfaces
can be estimated from the work function of the substrate at least for weakly coupled graphene.

The charges transferred between the substrate and the graphene layer originate from the
Dirac cone on the graphene side. These might be electrons or holes depending on the doping of
the graphene. The shift of the work function due to the charge transfer can therefore be directly
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Figure 6. Work function of graphene-covered surfaces versus the work function of the
clean substrates (blue open circles). The solid curve shows the results of a capacitor
model, which match the calculated results plotted by green open squares [24, 25]. The
energies of the Dirac point (red filled circles) follow the same curve with an energy scale
shifted 4.5 eV relative to the vacuum level.

related to the energy of the Dirac point relative to the Fermi energy. Zero is obtained for a
work function of 4.5 eV. The values are taken from the literature [36, 40–43] and are plotted
in figure 6 as filled red circles. The agreement is perfect for SiC, but for the other surfaces
larger deviations are observed. One has to keep in mind that for the noble-metal substrates the
graphene layer is p-doped and the Dirac point cannot be observed directly in photoemission
spectroscopy. Its energy is extrapolated from the dispersion of the Dirac cone below the Fermi
energy. The experimental results are in good agreement with the calculations, which show the
constant difference between the work function and the energy of the Dirac point as predicted
by calculations [24, 25]. This has been found also for different modifications of graphene on
SiC [30].

3.2. Binding energies

The important parameter of the dielectric model is the charge density of the graphene layer,
which can be related to the doping level and work function. The energies of the image-potential
states as a function of work function have been plotted as red solid lines in figure 4. Large open
circles (blue) show the available experimental values [9, 29, 30]. The symbol size represents
typical experimental uncertainties. The data points for graphite were taken from [31], which
observed the lowest three image-potential states. Other groups reported binding energies of
0.85 ± 0.10 eV for the n = 1 image-potential state [44, 45]. The experimental values are slightly
above the calculated lines, but the slope is in fairly good agreement. The agreement could be
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improved by using a smaller value for the parameter α relating the work function and FT wave
vector, W = αkFT. The data point for the n = 1 state of SiC lies significantly too high. This might
be an effect of different screening properties of the dielectric substrate or residual binding to the
buffer layer. The accuracy and work function range of the experimental data for the noble-metal
surfaces is not sufficient to determine the slope independently. Therefore, we only conclude that
the experimental data are in reasonable agreement with the predictions of the dielectric model
calculations.

Finally, we discuss the interpretation of experimental data measured on Gr/Ru [10]. Three
bound states have been measured with respect to the Fermi energy (all energies in eV): 3.44 (1′),
3.59 (1) and 3.82 (2). The work function was measured as 4.24 eV. On the corrugated graphene
on the Ru (0001) surface also lower areas exist which have a work function of 4.00 eV. On
all other surfaces only the n = 1 and 3 image-potential states have been found. It is therefore
worthwhile to check whether on Ru the additional state might be the n = 2 image-potential state.
The data are plotted as green solid circles with error bars in figure 4 for the two different values
of the work function. For a work function of 4.00 eV, the experimental binding energies are in
reasonably good agreement with the calculated lines. This assignment would also be compatible
with the observed monotonic decrease of the lifetime with the binding energy [10]. However,
we cannot rule out the consistent interpretation based on different local work functions on the
corrugated graphene on Ru as proposed by Armbrust et al [10].

4. Conclusions

Using standard models for the dielectric response and the reflection of electromagnetic waves at
a surface we have computed the static self-energy for an ultra-thin slab mimicking a graphene
layer. The self-induced potential goes continuously from the exchange and correlation energy
inside the material to the classical asymptotic image potential in the vacuum. For the purpose
of obtaining image-potential state binding energies we find that FT makes an excellent and
convenient approximation to the accurate RPA. Eigenvalues and eigenfunctions have been
compared with the Whittaker classical series and recent experiments on Gr/Ir. A free standing
graphene ultra-thin layer produces a spatially symmetric self-energy that induces an image
potential series with even and odd states. The odd members of the series show a remarkable
resemblance to the solution of the Schrödinger equation for the classical image potential
(Whittaker wave functions). On the other hand, even wave functions arise as new states that
differ from Whittaker in several key respects, e.g. their non-zero density probability at the origin.
While the qualitative aspects of the image series supported by a thin slab can be described in
terms of quite general physical properties, the detailed quantitative values depend crucially on
the penetration of wave functions into the substrate and the thin graphene film supported on it.
We have considered the limiting cases of full and no penetration. In the case of films weakly
interacting with a support and wave functions penetrating well inside the system, some new
states may consequently appear in between the classical ones that can be traced back to the even
states in a free-standing slab. In cases where the interaction is strong and the surface electronic
structure prevents the penetration of wave functions, behavior more similar to a standard
metallic surface is expected. We note that the formalism used here can be easily generalized
to include the effect of surface plasmons via a frequency-dependent dielectric function [46].
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The experimental results for graphene on various substrates compare well with theoretical
predictions. The measured work function change due to graphene is in agreement with the
capacitor model of Giovanetti et al [24, 25]. This opens the possibility to predict the work
function of graphene-covered surfaces from the substrate work function. The work function
difference from an isolated graphene sheet is related to the doping of the graphene layer
and determines in turn the available screening charge. The resulting change in the energy
of the image-potential states calculated with the theoretical model is in agreement with the
experimental data from 2PPE.
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Appendix A. Electrodynamics of a slab characterized by a width 2d and ε(k)

We are interested in the quasi-static self-energy potential by an external charge near a slab
characterized by a dielectric function, ε(k). The dynamical problem, however, is solved exactly
in the same way by introducing a k- and w-dependent response function ε(k,w). The problem
is solved independently for two homogeneous systems (pseudo-vacuum and pseudo-medium),
with a set of fictitious charges, σ , to reproduce the real fields in the regions for the vacuum
and the material, respectively [12]. Notice that the electromagnetic field propagator in vacuum,
4π
k2 , corresponds to three spatial dimensions, Ek = (Eκ, q). Symmetric and antisymmetric solutions
are analyzed separately and combined to yield a solution for the most general case. The extra
fictitious charges are finally removed from the solutions by using matching conditions. Since a
free standing graphene slab is symmetric with respect to the middle plane, matching conditions
on only one surface need to be considered.

The self-energy of the external probe charge Q is obtained by computing the total potential
in each region, and subtracting the bare potential due to Q

8(z, z1)=
1

2

∫
d2k‖

(2π)2
dq

2π
eiqz

{
φS(k)+φA(k)−

4πQ

k2
e−iqz1

}
, (A.1)

where φS,A(k) must be separately obtained for Q inside/outside the slab. The case where Q is
inside the material is schematically shown in figure A.1.

A.1. Q inside the slab (II and III, −d 6 z 6 d)

A schematic distribution of the pseudo-charges when the external Q is inside the slab is
given in figure A.2 for the antisymmetric case. The symmetric configuration follows easily by
substituting the factors (−1)n in the sums by (+1)n. Continuity of the perpendicular component
of the displacement field results in σV

= −σM for the pseudo-vacuum, V, and the pseudo-
medium, M, for both the symmetric and antisymmetric cases.
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Figure A.1. Q inside the ultra-thin slab (06 z1 6 d , region II). The problem is
decomposed as a superposition of symmetric (S, upper part) and antisymmetric (A,
lower part) configurations. The slab polarization is characterized by ε(Ek), and its width,
2d, and it is symmetric around O1 (z = 0). Specular reflection conditions for the fields
are imposed at one of the two equivalent surfaces (O2, z = d).

Therefore, the total potential for the symmetric (antisymmetric) cases are

φV(k)= −
4π

k2
σκ,

φM(k)=
4π

k2ε(k)

(
σκ

∞∑
n=−∞

(±)neiq2dn + Q
∞∑

n=0

(±)n
(
eiq(z1+2dn)

± eiq(2d+z1+2dn)
))
.

(A.2)

The surface charges, σ S and σA, are separately obtained from the condition 8V(z = d+)=

8M(z = d−).
Convergence of the different series in these expressions is guaranteed by the zeros of the

dielectric function, i.e. the normal modes dressed by the interaction in the medium [12]. For the
simple Thomas–Fermi dielectric function we have k2εFT(k)= (q2 + κ2 + k2

FT)= (q + iχ)(q −

iχ), and the integration over the perpendicular moment, q , can be performed to obtain analytic
or semi-analytic expressions that are given below.

A.2. Q inside the vacuum (I and IV, |z|> d)

A similar procedure yields for the case of Q in the vacuum region

φV(k)=
4π

k2

[
−σκ +

Q

2

(
e−iqz1 − eiqz1

)]
,

φM(k)=
4π

k2ε(k)
σκ

∞∑
n=−∞

(±1)n eiq2dn.

(A.3)

Equation (A.1) yields a numerical procedure that allows us to obtain the self-induced
potential. Using the FT approximation, quasi-explicit expressions that only depend on a single
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Figure A.2. Schematics for the extended pseudo-vacuum and pseudo-medium with
charge distribution appropriate for the antisymmetric case. Upper panel: Q inside the
slab. Lower panel: Q in the vacuum region.

numerical integration have been obtained and given in (1). We remark that this is an excellent
approximation to the full RPA result for the purpose of computing binding energies of image-
potential states.

Appendix B. Useful analytical results in the Fermi–Thomas approximation

The semi-infinite system (d → ∞), along with the use of the FT dielectric function, brings
some simplifications to the expression for the potential that can be exploited to compute the
exact values at the surface, well inside the material and in the asymptotic vacuum region. For
convenience, in this appendix we move the origin to the surface (z = d).
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B.1. Induced potential in the vacuum region

Using the equations in appendix A we obtain the induced potential in the vacuum (now z > 0):

8(z > 0)=
1

2

∫
∞

0
dκe−κ2z

[
1 −

2

1 + κ

π

∫ dq
k2ε(k)

]
(B.1)

that can be further simplified by the use of k2ε(k)= k2εFT(k)= κ2 + q2 + k2
FT

=
1

2

∫
∞

0
dκ e−κ2z κ −χ

κ +χ
,

= −
1

12z3

{
6 0F̃1

(
; −1; −k2

FTz2
)
− 3πk2

FTz2H2(2kFTz)+ k2
FTz2(4kFTz + 3)

+
(
3 − 6k2

FTz2 log (kFTz)
)

J0(2kFTz)+ 6kFTz(log (kFT)+ log (z)+ 1)J1(2kFTz)+ 3
}
, (B.2)

where 0F̃1(; b; z) is the regularized confluent hypergeometric function, H2(z) is the Struve
function and Jn(z) are Bessel functions of the first kind.

B.2. Asymptotic behavior and position of the image plane

We can study the asymptotic behavior in the long wave-length region (κ ≈ 0) by expanding the
fraction in the integrand in equation (B.2), κ−χ

κ+χ ≈ −1 + 2κ
kFT

+ O(κ2), to obtain

8(z)≈ −
1

4z
+

1

4kFTz2
. (B.3)

On the other hand, we can expand the classical image potential around z = ∞

−
1

4(z − z0)
≈ −

1

4z
−

z0

4z2
+ O

(
1

z3

)
, (B.4)

which allows us to identify the position of the image plane by direct comparison of both
expressions, z0 = −

1
kFT

.
This asymptotic expression, corrected by the position of the image plane obtained above,

makes an excellent approximation to the full potential either in the vacuum region outside the
slab or in the middle of a vacuum gap, the case discussed below.

B.3. Particular values for z = 0 and −∞

For z = 0 (d �
1

kFT
) we have

8(z = 0)=
1

2

∫
∞

0
e−κ2z κ −χ

κ +χ
dκ = −

kFT

3
. (B.5)

For z = −∞,

8(z = −d)=
1

2

∫
d3Ek

(2π)3
4π

k2

(
1

εFT(k)
− 1

)
=

k2
FT

2

∫
∞

0
dκ

1

κχ +χ2
= −

kFT

2
. (B.6)
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Figure B.1. Self-induced potential, 8(z), of a unit test charge at different positions in a
vacuum gap of width 2 au, and inside the surrounding metals (kFT = 1 au). Continuous
line (black): non-local potential for the gap (FT). Dashed line (black): non-local
potential for each surface in the gap considered as independent systems (FT). Dashed
line (red): classical result taking into account all the classical images and counter-
images [46]. Dashed line (blue): semi-classical result adding the contributions of all
the classical images, but corrected by an image plane at z0 = ±

1
kFT

(valid in the vacuum
region only).

B.4. Potential in a vacuum gap

It is handy to apply the same techniques to the inverse problem: the potential in a vacuum gap
between two semi-infinite media at z <±d . The theoretical procedure proceeds along similar
lines as we have analyzed in this paper, and we simply give the FT result here

8(z > d)= −
kFT

2
−

e2kFT(d−z)

4(d − z)

−

∫
∞

0
dκ

κ2e2(d−z)
√
κ2+k2

FT

(
κ +

√
κ2 + k2

FT coth [2dκ]
)

√
κ2 + k2

FT

(
κ +

√
κ2 + k2

FT coth [dκ]
) (
κ +

√
κ2 + k2

FT tanh [dκ]
) (B.7)

and

8(−d 6 z 6 d)=

∫
∞

0
dκe−2κz

−k2
FT − e4κzk2

FT + e2κ(−d+z)
(

2k2
FT + 4κ

(
κ −

√
κ2 + k2

FT

))
4
(

2κ
√
κ2 + k2

FT cosh [2dκ] +
(
2κ2 + k2

FT

)
sinh [2dκ]

) .

(B.8)

This potential has been plotted in figure B.1, where it is compared with: (i) the classical
value [46, 47],

8(|z|6 d)= −
2γ −9(0)

(
1
2 + z

2d

)
−9(0)

(
1
2 −

z
2d

)
8d

. (B.9)

(90(z) is the digamma function and γ = −0.577 is the Euler constant), (ii) the classical value
corrected by an image plane determined by expanding the full non-local potential calculated in
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the FT approximation and (iii) the independent non-local potential for each of the two surfaces
delimiting the vacuum gap.
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