665 research outputs found
Argon metastable dynamics in a filamentary jet micro-discharge at atmospheric pressure
Space and time resolved concentrations of Ar () metastable atoms at
the exit of an atmospheric pressure radio-frequency micro-plasma jet were
measured using tunable diode laser absorption spectroscopy. The discharge
features a coaxial geometry with a hollow capillary as an inner electrode and a
ceramic tube with metal ring as outer electrode. Absorption profiles of
metastable atoms as well as optical emission measurements reveal the dynamics
and the filamentary structure of the discharge. The average spatial
distribution of Ar metastables is characterized with and without a target in
front of the jet, showing that the target potential and therewith the electric
field distribution substantially changes the filaments' expansion. Together
with the detailed analysis of the ignition phase and the discharge's behavior
under pulsed operation, the results give an insight into the excitation and
de-excitation mechanisms
Impurity intrusion in radio-frequency micro-plasma jets operated in ambient air
Space and time resolved concentrations of helium metastable atoms in an
atmospheric pressure radio-frequency micro-plasma jet were measured using
tunable diode laser absorption spectroscopy. Spatial profiles as well as
lifetime measurements show significant influences of air entering the discharge
from the front nozzle and of impurities originating from the gas supply system.
Quenching of metastables was used to deduce quantitative concentrations of
intruding impurities. The impurity profile along the jet axis was determined
from optical emission spectroscopy as well as their dependance on the feed gas
flow through the jet.Comment: Journal of Physics D: Applied Physics (accepted), 6 page
Application of a mode-locked fiber laser for highly time resolved broadband absorption spectroscopy and laser-assisted breakdown on micro-plasmas
Cataloged from PDF version of article.Absorption spectroscopy is known to be a powerful tool to gain spatially and temporally resolved information on excited and reactive species in a plasma discharge. Furthermore, the interaction of the discharge with short intense laser pulses can trigger the ignition and the transition into other transient states of the plasma. In this context laser-assisted 'pump-probe' experiments involving simultaneously generated supercontinuum radiation yield highly temporally resolved and spatially well-defined information on the transient phenomena. In this paper we demonstrate the possibility for 'pump-probe' experiments by initiating breakdown on a picosecond time scale ('pump') with a high-power beam and measuring the broadband absorption with the simultaneously provided supercontinuum ('probe'). Since both pulses are generated from the same mode-locked master oscillator, they have a strong level of synchronization
The Oscillatory Behavior of the High-Temperature Expansion of Dyson's Hierarchical Model: A Renormalization Group Analysis
We calculate 800 coefficients of the high-temperature expansion of the
magnetic susceptibility of Dyson's hierarchical model with a Landau-Ginzburg
measure. Log-periodic corrections to the scaling laws appear as in the case of
a Ising measure. The period of oscillation appears to be a universal quantity
given in good approximation by the logarithm of the largest eigenvalue of the
linearized RG transformation, in agreement with a possibility suggested by K.
Wilson and developed by Niemeijer and van Leeuwen. We estimate to be
1.300 (with a systematic error of the order of 0.002) in good agreement with
the results obtained with other methods such as the -expansion. We
briefly discuss the relationship between the oscillations and the zeros of the
partition function near the critical point in the complex temperature plane.Comment: 21 pages, 10 Postcript figures, latex file, uses revte
Family health climate scale (FHC-scale): Development and validation
Background:
The family environment is important for explaining individual health behaviour. While previous research mostly focused on influences among family members and dyadic interactions (parent-child), the purpose of this study was to develop a new measure, the Family Health Climate Scale (FHC-Scale), using a family-based approach. The FHC is an attribute of the whole family and describes an aspect of the family environment that is related to health and health behaviour. Specifically, a questionnaire measuring the FHC (a) for nutrition (FHC-NU) and (b) for activity behaviour (FHC-PA) was developed and validated.
Methods:
In Study 1 (N = 787) the FHC scales were refined and validated. The sample was randomly divided into two subsamples. With random sample I exploratory factor analyses were conducted and items were selected according to their psychometric quality. In a second step, confirmatory factor analyses were conducted using the random sample II. In Study 2 (N = 210 parental couples) the construct validity was tested by correlating the FHC to self-determined motivation of healthy eating and physical activity as well as the families’ food environment and joint physical activities.
Results:
Exploratory factor analyses with random sample I (Study 1) revealed a four (FHC-NU) and a three (FHC-PA) factor model. These models were cross-validated with random sample II and demonstrated an acceptable fit [FHC-PA: χ2 = 222.69, df = 74, p < .01; χ2/df = 3.01; CFI = .96; SRMR = .04; RMSEA = .07, CI .06/.08; FHC-NU: χ2 = 278.30, df = 113, p < .01, χ2/df = 2.46, CFI = .96; SRMR = .04; RMSEA = .06, CI .05/.07]. The perception of FHC correlated (p < .01) with the intrinsic motivation of healthy eating (r = .42) and physical activity (r = .56). Moreover, parental perceptions of FHC-NU correlated with household soft drink availability (r = −.31) and perceptions of FHC-PA with the frequency of joint physical activities with the child (r = .51). These patterns were found on the intraindividual and interindividual level.
Conclusions:
Two valid instruments measuring the FHC within families were developed. The use of different informants’ ratings demonstrated that the FHC is a family level variable. The results confirm the high relevance of the FHC for individuals’ health behaviour. The FHC and the measurement instruments are useful for examining health-related aspects of the family environment
A Guide to Precision Calculations in Dyson's Hierarchical Scalar Field Theory
The goal of this article is to provide a practical method to calculate, in a
scalar theory, accurate numerical values of the renormalized quantities which
could be used to test any kind of approximate calculation. We use finite
truncations of the Fourier transform of the recursion formula for Dyson's
hierarchical model in the symmetric phase to perform high-precision
calculations of the unsubtracted Green's functions at zero momentum in
dimension 3, 4, and 5. We use the well-known correspondence between statistical
mechanics and field theory in which the large cut-off limit is obtained by
letting beta reach a critical value beta_c (with up to 16 significant digits in
our actual calculations). We show that the round-off errors on the magnetic
susceptibility grow like (beta_c -beta)^{-1} near criticality. We show that the
systematic errors (finite truncations and volume) can be controlled with an
exponential precision and reduced to a level lower than the numerical errors.
We justify the use of the truncation for calculations of the high-temperature
expansion. We calculate the dimensionless renormalized coupling constant
corresponding to the 4-point function and show that when beta -> beta_c, this
quantity tends to a fixed value which can be determined accurately when D=3
(hyperscaling holds), and goes to zero like (Ln(beta_c -beta))^{-1} when D=4.Comment: Uses revtex with psfig, 31 pages including 15 figure
Ionization by bulk heating of electrons in capacitive radio frequency atmospheric pressure microplasmas
Electron heating and ionization dynamics in capacitively coupled radio
frequency (RF) atmospheric pressure microplasmas operated in helium are
investigated by Particle in Cell simulations and semi-analytical modeling. A
strong heating of electrons and ionization in the plasma bulk due to high bulk
electric fields are observed at distinct times within the RF period. Based on
the model the electric field is identified to be a drift field caused by a low
electrical conductivity due to the high electron-neutral collision frequency at
atmospheric pressure. Thus, the ionization is mainly caused by ohmic heating in
this "Omega-mode". The phase of strongest bulk electric field and ionization is
affected by the driving voltage amplitude. At high amplitudes, the plasma
density is high, so that the sheath impedance is comparable to the bulk
resistance. Thus, voltage and current are about 45{\deg} out of phase and
maximum ionization is observed during sheath expansion with local maxima at the
sheath edges. At low driving voltages, the plasma density is low and the
discharge becomes more resistive resulting in a smaller phase shift of about
4{\deg}. Thus, maximum ionization occurs later within the RF period with a
maximum in the discharge center. Significant analogies to electronegative low
pressure macroscopic discharges operated in the Drift-Ambipolar mode are found,
where similar mechanisms induced by a high electronegativity instead of a high
collision frequency have been identified
Concepts and characteristics of the 'COST Reference Microplasma Jet'
Biomedical applications of non-equilibrium atmospheric pressure plasmas have attracted intense interest in the past few years. Many plasma sources of diverse design have been proposed for these applications, but the relationship between source characteristics and application performance is not well-understood, and indeed many sources are poorly characterized. This circumstance is an impediment to progress in application development. A reference source with well-understood and highly reproducible characteristics may be an important tool in this context. Researchers around the world should be able to compare the characteristics of their own sources and also their results with this device. In this paper, we describe such a reference source, developed from the simple and robust micro-scaled atmospheric pressure plasma jet (μ-APPJ) concept. This development occurred under the auspices of COST Action MP1101 'Biomedical Applications of Atmospheric Pressure Plasmas'. Gas contamination and power measurement are shown to be major causes of irreproducible results in earlier source designs. These problems are resolved in the reference source by refinement of the mechanical and electrical design and by specifying an operating protocol. These measures are shown to be absolutely necessary for reproducible operation. They include the integration of current and voltage probes into the jet. The usual combination of matching unit and power supply is replaced by an integrated LC power coupling circuit and a 5 W single frequency generator. The design specification and operating protocol for the reference source are being made freely available
Axial light emission and Ar metastable densities in a parallel plate dc micro discharge in steady state and transient regimes
Axial emission profiles in a parallel plate dc micro discharge (feedgas:
argon; discharge gap d=1mm; pressure p=10Torr) were studied by means of time
resolved imaging with a fast ICCD camera. Additionally, volt-ampere (V-A)
characteristics were recorded and Ar* metastable densities were measured by
tunable diode laser absorption spectroscopy (TDLAS). Axial emission profiles in
the steady state regime are similar to corresponding profiles in standard size
discharges (d=1cm, p=1Torr). For some discharge conditions relaxation
oscillations are present when the micro discharge switches periodically between
low current Townsend-like mode and normal glow. At the same time the axial
emission profile shows transient behavior, starting with peak distribution at
the anode, which gradually moves towards the cathode during the normal glow.
The development of argon metastable densities highly correlates with the
oscillating discharge current. Gas temperatures in the low current
Townsend-like mode (T= 320-400K) and the high current glow mode (T=469-526K)
were determined by the broadening of the recorded spectral profiles as a
function of the discharge current.Comment: submitted to Plasma Sources Sci. Techno
- …