317 research outputs found
Development stage-specific proteomic profiling uncovers small, lineage specific proteins most abundant in the Aspergillus Fumigatus conidial proteome
Background
The pathogenic mold Aspergillus fumigatus is the most frequent infectious cause of death in severely immunocompromised individuals such as leukemia and bone marrow transplant patients. Germination of inhaled conidia (asexual spores) in the host is critical for the initiation of infection, but little is known about the underlying mechanisms of this process. Results
To gain insights into early germination events and facilitate the identification of potential stage-specific biomarkers and vaccine candidates, we have used quantitative shotgun proteomics to elucidate patterns of protein abundance changes during early fungal development. Four different stages were examined: dormant conidia, isotropically expanding conidia, hyphae in which germ tube emergence has just begun, and pre-septation hyphae. To enrich for glycan-linked cell wall proteins we used an alkaline cell extraction method. Shotgun proteomic resulted in the identification of 375 unique gene products with high confidence, with no evidence for enrichment of cell wall-immobilized and secreted proteins. The most interesting discovery was the identification of 52 proteins enriched in dormant conidia including 28 proteins that have never been detected in the A. fumigatus conidial proteome such as signaling protein Pil1, chaperones BipA and calnexin, and transcription factor HapB. Additionally we found many small, Aspergillus specific proteins of unknown function including 17 hypothetical proteins. Thus, the most abundant protein, Grg1 (AFUA_5G14210), was also one of the smallest proteins detected in this study (M.W. 7,367). Among previously characterized proteins were melanin pigment and pseurotin A biosynthesis enzymes, histones H3 and H4.1, and other proteins involved in conidiation and response to oxidative or hypoxic stress. In contrast, expanding conidia, hyphae with early germ tubes, and pre-septation hyphae samples were enriched for proteins responsible for housekeeping functions, particularly translation, respiratory metabolism, amino acid and carbohydrate biosynthesis, and the tricarboxylic acid cycle. Conclusions
The observed temporal expression patterns suggest that the A. fumigatus conidia are dominated by small, lineage-specific proteins. Some of them may play key roles in host-pathogen interactions, signal transduction during conidial germination, or survival in hostile environments
Characterization of Clinically-Attenuated Burkholderia mallei by Whole Genome Sequencing: Candidate Strain for Exclusion from Select Agent Lists
is an understudied biothreat agent responsible for glanders which can be lethal in humans and animals. Research with this pathogen has been hampered in part by constraints of Select Agent regulations for safety reasons. Whole genomic sequencing (WGS) is an apt approach to characterize newly discovered or poorly understood microbial pathogens. genome. Therefore, the strain by itself is unlikely to revert naturally to its virulent phenotype. There were other genes present in one strain and not the other and vice-versa. was both avirulent in the natural host ponies, and did not possess T3SS associated genes may be fortuitous to advance biodefense research. The deleted virulence-essential T3SS is not likely to be re-acquired naturally. These findings may provide a basis for exclusion of SAVP1 from the Select Agent regulation or at least discussion of what else would be required for exclusion. This exclusion could accelerate research by investigators not possessing BSL-3 facilities and facilitate the production of reagents such as antibodies without the restraints of Select Agent regulation
Stability of vitamin K antagonist anticoagulation after COVID-19 diagnosis
Background: Coagulopathy has been reported in severely ill patients with coronavirus disease 2019 (COVID-19). It is unclear whether outpatients with COVID-19 who are treated with vitamin K antagonists (VKAs) have unstable anticoagulation.Objective: To assess the stability of VKA therapy in patients with COVID-19 through a case-crossover study.Methods: Between February and July 2020, we included patients who tested positive for COVID-19 from two anticoagulant clinics in the Netherlands. We collected international normalized ratios (INRs) determined between 26 weeks before infection and 12 weeks after. Time in therapeutic range (TTR) and the variance growth rate ( VGR) were calculated within patients.Results: Fifty-one patients with COVID-19 (mean age, 84 years) were included, of whom 15 (29%) were men. Mean TTR in the 26 weeks before COVID-19 was 80% (95% confidence interval [CI], 75-85) compared to 59% (95% CI, 51-68) in the 6 weeks after infection. Mean TTR difference was-23% (95% CI, -32 to -14) with a time above therapeutic range of 38% (95% CI, 30-47) in the 6 weeks after infection. The TTR rose again to 79% (95% CI, 69-89) between 6 and 12 weeks after infection. Also, VGR increased, with a mean increase of 4.8 (95% CI, 2.1-7.5) in the 6 weeks after infection. In the 26 weeks before infection, we registered 19 of 641 (3%) of INR >= 5.0 compared with 35 of 247 (14%) in the 6 weeks after (risk ratio, 4.4; 95% CI, 2.7-7.3).Conclusions: COVID-19 is associated with a strong decrease in TTR and in therapeutic stability in patients taking VKAs. Additional monitoring in these patients is advised to maximize therapeutic stability.Clinical epidemiolog
Continuing evolution of Burkholderia mallei through genome reduction and large-scale rearrangements
Burkholderia mallei (Bm), the causative agent of the predominately equine disease glanders, is a genetically uniform species that is very closely related to the much more diverse species Burkholderia pseudomallei (Bp), an opportunistic human pathogen and the primary cause of melioidosis. To gain insight into the relative lack of genetic diversity within Bm, we performed whole-genome comparative analysis of seven Bm strains and contrasted these with eight Bp strains. The Bm core genome (shared by all seven strains) is smaller in size than that of Bp, but the inverse is true for the variable gene sets that are distributed across strains. Interestingly, the biological roles of the Bm variable gene sets are much more homogeneous than those of Bp. The Bm variable genes are found mostly in contiguous regions flanked by insertion sequence (IS) elements, which appear to mediate excision and subsequent elimination of groups of genes that are under reduced selection in the mammalian host. The analysis suggests that the Bm genome continues to evolve through random IS-mediated recombination events, and differences in gene content may contribute to differences in virulence observed among Bm strains. The results are consistent with the view that Bm recently evolved from a single strain of Bp upon introduction into an animal host followed by expansion of IS elements, prophage elimination, and genome rearrangements and reduction mediated by homologous recombination across IS elements
FungiDB: an integrated functional genomics database for fungi
FungiDB (http://FungiDB.org) is a functional genomic resource for pan-fungal genomes that was developed in partnership with the Eukaryotic Pathogen Bioinformatic resource center (http://EuPathDB.org). FungiDB uses the same infrastructure and user interface as EuPathDB, which allows for sophisticated and integrated searches to be performed using an intuitive graphical system. The current release of FungiDB contains genome sequence and annotation from 18 species spanning several fungal classes, including the Ascomycota classes, Eurotiomycetes, Sordariomycetes, Saccharomycetes and the Basidiomycota orders, Pucciniomycetes and Tremellomycetes, and the basal βZygomyceteβ lineage Mucormycotina. Additionally, FungiDB contains cell cycle microarray data, hyphal growth RNA-sequence data and yeast two hybrid interaction data. The underlying genomic sequence and annotation combined with functional data, additional data from the FungiDB standard analysis pipeline and the ability to leverage orthology provides a powerful resource for in silico experimentation
Aspergillus Genomes and the Aspergillus Cloud
Aspergillus Genomes is a public resource for viewing annotated genes predicted by various Aspergillus sequencing projects. It has arisen from the union of two significant resources: the Aspergillus/Aspergillosis website and the Central Aspergillus Data REpository (CADRE). The former has primarily served the medical community, providing information about Aspergillus and associated diseases to medics, patients and scientists; the latter has focused on the fungal genomic community, providing a central repository for sequences and annotation extracted from Aspergillus Genomes. By merging these databases, genomes benefit from extensive cross-linking with medical information to create a unique resource, spanning genomics and clinical aspects of the genus. Aspergillus Genomes is accessible from http://www.aspergillus-genomes.org.uk
Temporal Artery versus Bladder Thermometry during Adult Medical-Surgical Intensive Care Monitoring: An Observational Study
Abstract
Background
We sought to evaluate agreement between a new and widely implemented method of temperature measurement in critical care, temporal artery thermometry and an established method of core temperature measurement, bladder thermometry as performed in clinical practice.
Methods
Temperatures were simultaneously recorded hourly (n = 736 observations) using both devices as part of routine clinical monitoring in 14 critically ill adult patients with temperatures ranging β₯1Β°C prior to consent.
Results
The mean difference between temporal artery and bladder temperatures measured was -0.44Β°C (95% confidence interval, -0.47Β°C to -0.41Β°C), with temporal artery readings lower than bladder temperatures. Agreement between the two devices was greatest for normothermia (36.0Β°C to < 38.3Β°C) (mean difference -0.35Β°C [95% confidence interval, -0.37Β°C to -0.33Β°C]). The temporal artery thermometer recorded higher temperatures during hypothermia (< 36Β°C) (mean difference 0.66Β°C [95% confidence interval, 0.53Β°C to 0.79Β°C]) and lower temperatures during hyperthermia (β₯38.3Β°C) (mean difference -0.90Β°C [95% confidence interval, -0.99Β°C to -0.81Β°C]). The sensitivity for detecting fever (core temperature β₯38.3Β°C) using the temporal artery thermometer was 0.26 (95% confidence interval, 0.20 to 0.33), and the specificity was 0.99 (95% confidence interval, 0.98 to 0.99). The positive likelihood ratio for fever was 24.6 (95% confidence interval, 10.7 to 56.8); the negative likelihood ratio was 0.75 (95% confidence interval, 0.68 to 0.82).
Conclusions
Temporal artery thermometry produces somewhat surprising disagreement with an established method of core temperature measurement and should not to be used in situations where body temperature needs to be measured with accuracy
Genes Differentially Expressed in Conidia and Hyphae of Aspergillus fumigatus upon Exposure to Human Neutrophils
Aspergillus fumigatus is the most common etiologic agent of invasive aspergillosis in immunocompromised patients. Several studies have addressed the mechanism involved in host defense but only few have investigated the pathogen's response to attack by the host cells. To our knowledge, this is the first study that investigates the genes differentially expressed in conidia vs hyphae of A. fumigatus in response to neutrophils from healthy donors as well as from those with chronic granulomatous disease (CGD) which are defective in the production of reactive oxygen species.Transcriptional profiles of conidia and hyphae exposed to neutrophils, either from normal donors or from CGD patients, were obtained by using the genome-wide microarray. Upon exposure to either normal or CGD neutrophils, 244 genes were up-regulated in conidia but not in hyphae. Several of these genes are involved in the degradation of fatty acids, peroxisome function and the glyoxylate cycle which suggests that conidia exposed to neutrophils reprogram their metabolism to adjust to the host environment. In addition, the mRNA levels of four genes encoding proteins putatively involved in iron/copper assimilation were found to be higher in conidia and hyphae exposed to normal neutrophils compared to those exposed to CGD neutrophils. Deletants in several of the differentially expressed genes showed phenotypes related to the proposed functions, i.e. deletants of genes involved in fatty acid catabolism showed defective growth on fatty acids and the deletants of iron/copper assimilation showed higher sensitivity to the oxidative agent menadione. None of these deletants, however, showed reduced resistance to neutrophil attack.This work reveals the complex response of the fungus to leukocytes, one of the major host factors involved in antifungal defense, and identifies fungal genes that may be involved in establishing or prolonging infections in humans
Genetics of Dothistromin Biosynthesis of Dothistroma septosporum: An Update
Dothistroma needle blight is one of the most devastating fungal pine diseases worldwide. The disease is characterized by accumulation in pine needles of a red toxin, dothistromin, that is chemically related to aflatoxin (AF) and sterigmatocystin (ST). This review updates current knowledge of the genetics of dothistromin biosynthesis by the Dothistroma septosporum pathogen and highlights differences in gene organization and regulation that have been discovered between the dothistromin and AF/ST systems. Some previously reported genes are promoted or demoted as βdothistromin genesβ based on recent research. A new dothistromin gene, norB, is reported, and evidence of dothistromin gene homologs in other Dothideomycete fungi is presented. A hypothesis for the biological role of dothistromin is outlined. Finally, the impact that the availability of the D. septosporum genome sequence will have on dothistromin research is discussed
Post-genomic approaches to understanding interactions between fungi and their environment
Fungi inhabit every natural and anthropogenic environment on Earth. They have highly varied life-styles including saprobes (using only dead biomass as a nutrient source), pathogens (feeding on living biomass), and symbionts (co-existing with other organisms). These distinctions are not absolute as many species employ several life styles (e.g. saprobe and opportunistic pathogen, saprobe and mycorrhiza). To efficiently survive in these different and often changing environments, fungi need to be able to modify their physiology and in some cases will even modify their local environment. Understanding the interaction between fungi and their environments has been a topic of study for many decades. However, recently these studies have reached a new dimension. The availability of fungal genomes and development of post-genomic technologies for fungi, such as transcriptomics, proteomics and metabolomics, have enabled more detailed studies into this topic resulting in new insights. Based on a Special Interest Group session held during IMC9, this paper provides examples of the recent advances in using (post-)genomic approaches to better understand fungal interactions with their environments
- β¦