169 research outputs found

    Metal-Insulator Transition in a Generalized Hubbard Model with Correlated Hopping at Half-Filling

    Get PDF
    In the present paper metal-insulator transition is studied in a generalized Hubbard model with correlated hopping at half-filling and zero temperature. Single-particle Green function and energy spectrum of electron system are calculated. The expressions for energy gap width and the concentration of polar states (holes or doublons) are obtained. The conditions for metallic and insulating states are found.Comment: 11 pages, 2 eps figures, Latex 2.09, submitted to Phys. Stat. Sol. (B

    What is the limit of climate engineering by stratospheric injection of SO2?

    No full text
    The injection of sulfur dioxide (SO2) into the stratosphere to form an artificial stratospheric aerosol layer is discussed as an option for solar radiation management. The related reduction of radiative forcing depends upon the injected amount of sulfur dioxide, but aerosol model studies indicate a decrease in forcing efficiency with increasing injection rate. None of these studies, however, consider injection rates greater than 20 Tg(S) yr−1. But this would be necessary to counteract the strong anthropogenic forcing expected if "business as usual" emission conditions continue throughout this century. To understand the effects of the injection of larger amounts of SO2, we have calculated the effects of SO2 injections up to 100 Tg(S) yr−1. We estimate the reliability of our results through consideration of various injection strategies and from comparison with results obtained from other models. Our calculations show that the efficiency of such a geoengineering method, expressed as the ratio between sulfate aerosol forcing and injection rate, decays exponentially. This result implies that the sulfate solar radiation management strategy required to keep temperatures constant at that anticipated for 2020, while maintaining business as usual conditions, would require atmospheric injections of approximately 45 Tg(S) yr−1 (±15 % or 7 Tg(S) yr−1) at a height corresponding to 60 hPa. This emission is equivalent to 5 to 7 times the Mt. Pinatubo eruption each year

    Southern Annular Mode response to volcanic eruptions: implications for ice core proxies

    Get PDF
    Large tropical volcanic eruptions have been observed to have a significant influence on the large-scale circulation patterns of the Northern Hemisphere, through mechanisms related to the radiative effects of the sulfate aerosols resulting from the volcanic injection of sulfur dioxide into the stratosphere. While no such volcanically induced anomalies in Southern Hemisphere circulation have yet been observed, we find that in general circulation model simulations, eruptions with sulfur dioxide injections larger than that of the 1991 Mt. Pinatubo eruption do result in significant circulation changes in the SH, specifically an enhanced positive phase of the Southern Annular Mode (SAM). We explore the mechanisms for such a SAM response, as well as the corresponding changes in SH temperature, sea ice and precipitation. We also explore how the anomalously strong zonal winds characteristic of the positive SAM regime affect the rate of sulfate deposition to the Antarctic ice-sheet. We suggest that the use of ice-core sulfate records as a proxy for past volcanic activity may benefit from including knowledge of, or better assumptions regarding the changes in large scale atmospheric circulation after large tropical eruptions

    Revisiting the Agung 1963 volcanic forcing: Impact of one or two eruptions

    No full text
    In 1963 a series of eruptions of Mt. Agung, Indonesia, resulted in the third largest eruption of the 20th century and claimed about 1900 lives. Two eruptions of this series injected SO2 into the stratosphere, which can create a long-lasting stratospheric sulfate layer. The estimated mass flux of the first eruption was about twice as large as the mass flux of the second eruption. We followed the estimated emission profiles and assumed for the first eruption on 17 March an injection rate of 4.7 Tg SO2 and 2.3 Tg SO2 for the second eruption on 16 May. The injected sulfur forms a sulfate layer in the stratosphere. The evolution of sulfur is nonlinear and depends on the injection rate and aerosol background conditions. We performed ensembles of two model experiments, one with a single eruption and a second one with two eruptions. The two smaller eruptions result in a lower sulfur burden, smaller aerosol particles, and 0.1 to 0.3 Wm−2 (10 %–20 %) lower radiative forcing in monthly mean global average compared to the individual eruption experiment. The differences are the consequence of slightly stronger meridional transport due to different seasons of the eruptions, lower injection height of the second eruption, and the resulting different aerosol evolution. Overall, the evolution of the volcanic clouds is different in case of two eruptions than with a single eruption only. The differences between the two experiments are significant. We conclude that there is no justification to use one eruption only and both climatic eruptions should be taken into account in future emission datasets

    Differences in the QBO response to stratospheric aerosol modification depending on injection strategy and species

    Get PDF
    A known adverse side effect of stratospheric aerosol modification (SAM) is the modification of the quasi-biennial oscillation (QBO), which is caused by the stratospheric heating associated with an artificial aerosol layer. Multiple studies found the QBO to slow down or even completely vanish for point-like injections of SO2 at the equator. The cause for this was found to be a modification of the thermal wind balance and a stronger tropical upwelling. For other injection strategies, different responses of the QBO have been observed. It has not yet been presented a theory which is able to explain those differences in a comprehensive manner, which is further complicated by the fact that the simulated QBO response is highly sensitive to the used model even under identical boundary conditions. Therefore, within this study we investigate the response of the QBO to SAM for three different injection strategies (point-like injection at the equator, point-like injection at 30° N and 30° S simultaneously, and areal injection into a 60° wide belt along the equator). Our simulations confirm that the QBO response significantly depends on the injection location. Based on the thermal wind balance, we demonstrate that this dependency is explained by differences in the meridional structure of the aerosol-induced stratospheric warming, i.e. the location and meridional extension of the maximum warming. Additionally, we also tested two different injection species (SO2 and H2SO4). The QBO response is qualitatively similar for both investigated injection species. Comparing the results to corresponding results of a second model, we further demonstrate the generality of our theory as well as the importance of an interactive treatment of stratospheric ozone for the simulated QBO response

    Dependency of the impacts of geoengineering on the stratospheric sulfur injection strategy - Part 1: Intercomparison of modal and sectional aerosol modules

    Get PDF
    Injecting sulfur dioxide into the stratosphere with the intent to create an artificial reflective aerosol layer is one of the most studied options for solar radiation management. Previous modelling studies have shown that stratospheric sulfur injections have the potential to compensate for the greenhouse-gas-induced warming at the global scale. However, there is significant diversity in the modelled radiative forcing from stratospheric aerosols depending on the model and on which strategy is used to inject sulfur into the stratosphere. Until now, it has not been clear how the evolution of the aerosols and their resulting radiative forcing depends on the aerosol microphysical scheme used - that is, if aerosols are represented by a modal or sectional distribution. Here, we have studied different spatio-temporal injection strategies with different injection magnitudes using the aerosolclimate model ECHAM-HAMMOZ with two aerosol microphysical modules: the sectional module SALSA (Sectional Aerosol module for Large Scale Applications) and the modal module M7. We found significant differences in the model responses depending on the aerosol microphysical module used. In a case where SO2 was injected continuously in the equatorial stratosphere, simulations with SALSA produced an 88 %-154% higher all-sky net radiative forcing than simulations with M7 for injection rates from 1 to 100 Tg(S) yr(-1). These large differences are identified to be caused by two main factors. First, the competition between nucleation and condensation: while injected sulfur tends to produce new particles at the expense of gaseous sulfuric acid condensing on pre-existing particles in the SALSA module, most of the gaseous sulfuric acid partitions to particles via condensation at the expense of new particle formation in the M7 module. Thus, the effective radii of stratospheric aerosols were 10 %-52% larger in M7 than in SALSA, depending on the injection rate and strategy. Second, the treatment of the modal size distribution in M7 limits the growth of the accumulation mode which results in a local minimum in the aerosol number size distribution between the accumulation and coarse modes. This local minimum is in the size range where the scattering of solar radiation is most efficient. We also found that different spatial-temporal injection strategies have a significant impact on the magnitude and zonal distribution of radiative forcing. Based on simulations with various injection rates using SALSA, the most efficient studied injection strategy produced a 33 %-42% radiative forcing compared with the least efficient strategy, whereas simulations with M7 showed an even larger difference of 48 %-116 %. Differences in zonal mean radiative forcing were even larger than that. We also show that a consequent stratospheric heating and its impact on the quasi-biennial oscillation depend on both the injection strategy and the aerosol microphysical model. Overall, these results highlight the crucial impact of aerosol microphysics on the physical properties of stratospheric aerosol which, in turn, causes significant uncertainties in estimating the climate impacts of stratospheric sulfur injections

    Initial fate of fine ash and sulfur from large volcanic eruptions

    Get PDF
    Large volcanic eruptions emit huge amounts of sulfur and fine ash into the stratosphere. These products cause an impact on radiative processes, temperature and wind patterns. In simulations with a General Circulation Model including detailed aerosol microphysics, the relation between the impact of sulfur and fine ash is determined for different eruption strengths and locations, one in the tropics and one in high Northern latitudes. Fine ash with effective radii between 1 μm and 15 μm has a lifetime of several days only. Nevertheless, the strong absorption of shortwave and long-wave radiation causes additional heating and cooling of ±20 K/day and impacts the evolution of the volcanic cloud. Depending on the location of the volcanic eruption, transport direction changes due to the presence of fine ash, vortices develop and temperature anomalies at ground increase. The results show substantial impact on the local scale but only minor impact on the evolution of sulfate in the stratosphere in the month after the simulated eruptions

    An interactive stratospheric aerosol model intercomparison of solar geoengineering by stratospheric injection of SO2 or accumulation-mode sulfuric acid aerosols

    Get PDF
    Studies of stratospheric solar geoengineering have tended to focus on modification of the sulfuric acid aerosol layer, and almost all climate model experiments that mechanistically increase the sulfuric acid aerosol burden assume injection of SO2. A key finding from these model studies is that the radiative forcing would increase sublinearly with increasing SO2 injection because most of the added sulfur increases the mass of existing particles, resulting in shorter aerosol residence times and aerosols that are above the optimal size for scattering. Injection of SO3 or H2SO4 from an aircraft in stratospheric flight is expected to produce particles predominantly in the accumulation-mode size range following microphysical processing within an expanding plume, and such injection may result in a smaller average stratospheric particle size, allowing a given injection of sulfur to produce more radiative forcing. We report the first multi-model intercomparison to evaluate this approach, which we label AM-H2SO4 injection. A coordinated multi-model experiment designed to represent this SO3- or H2SO4-driven geoengineering scenario was carried out with three interactive stratospheric aerosol microphysics models: the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM2) with the Whole Atmosphere Community Climate Model (WACCM) atmospheric configuration, the Max-Planck Institute's middle atmosphere version of ECHAM5 with the HAM microphysical module (MAECHAM5-HAM) and ETH's SOlar Climate Ozone Links with AER microphysics (SOCOL-AER) coordinated as a test-bed experiment within the Geoengineering Model Intercomparison Project (GeoMIP). The intercomparison explores how the injection of new accumulation-mode particles changes the large-scale particle size distribution and thus the overall radiative and dynamical response to stratospheric sulfur injection. Each model used the same injection scenarios testing AM-H2SO4 and SO2 injections at 5 and 25 Tg(S) yr-1 to test linearity and climate response sensitivity. All three models find that AM-H2SO4 injection increases the radiative efficacy, defined as the radiative forcing per unit of sulfur injected, relative to SO2 injection. Increased radiative efficacy means that when compared to the use of SO2 to produce the same radiative forcing, AM-H2SO4 emissions would reduce side effects of sulfuric acid aerosol geoengineering that are proportional to mass burden. The model studies were carried out with two different idealized geographical distributions of injection mass representing deployment scenarios with different objectives, one designed to force mainly the midlatitudes by injecting into two grid points at 30° N and 30° S, and the other designed to maximize aerosol residence time by injecting uniformly in the region between 30° S and 30° N. Analysis of aerosol size distributions in the perturbed stratosphere of the models shows that particle sizes evolve differently in response to concentrated versus dispersed injections depending on the form of the injected sulfur (SO2 gas or AM-H2SO4 particulate) and suggests that prior model results for concentrated injection of SO2 may be strongly dependent on model resolution. Differences among models arise from differences in aerosol formulation and differences in model dynamics, factors whose interplay cannot be easily untangled by this intercomparison. Copyright © 2022 Debra K. Weisenstein et al

    A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models

    No full text
    A new Geoengineering Model Intercomparison Project (GeoMIP) experiment "G4 specified stratospheric aerosols" (short name: G4SSA) is proposed to investigate the impact of stratospheric aerosol geoengineering on atmosphere, chemistry, dynamics, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulfur dioxide (SO2) into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments between 2020 and 2100. This stratospheric aerosol distribution, with a total burden of about 2 Tg S has been derived using the ECHAM5-HAM microphysical model, based on a continuous annual tropical emission of 8 Tg SO2 yr−1. A ramp-up of geoengineering in 2020 and a ramp-down in 2070 over a period of 2 years are included in the distribution, while a background aerosol burden should be used for the last 3 decades of the experiment. The performance of this experiment using climate and chemistry models in a multi-model comparison framework will allow us to better understand the impact of geoengineering and its abrupt termination after 50 years in a changing environment. The zonal and monthly mean stratospheric aerosol input data set is available at https://www2.acd.ucar.edu/gcm/geomip-g4-specified-stratospheric-aerosol-data-set

    Іноземні інвестиції у контексті економічного зростання

    Get PDF
    The eruption of Mount Pinatubo in 1991 injected a large amount of SO2 into the stratosphere, which formed sulfate aerosols. Increased scattering and absorption of UV radiation by the enhanced stratospheric SO2 and aerosols decreased the amount of UV radiation reaching the troposphere, causing changes in tropospheric photochemistry. These changes affected the oxidizing capacity of the atmosphere and the removal rate of CH4 in the years following the eruption. We use the three-dimensional chemistry transport model TM5 coupled to the aerosol microphysics module M7 to simulate the evolution of SO2 and sulfate aerosols from the Pinatubo eruption. Their effect on tropospheric photolysis frequencies and concentrations of OH and CH4 is quantified for the first time. We find that UV attenuation by stratospheric sulfur decreased the photolysis frequencies of both ozone and NO2 by about 2% globally, decreasing global OH concentrations by a similar amount in the first 2 years after the eruption. SO2 absorption mainly affects OH primary production by ozone photolysis, while aerosol scattering also alters OH recycling. The effect of stratospheric sulfur on global OH and CH4 is dominated by the effect of aerosol extinction, while SO2 absorption contributes by 12.5% to the overall effect in the first year after the eruption. The reduction in OH concentrations causes an increase in the CH4 growth rate of 4 and 2 ppb/yr in the first and second years after the eruption, respectively, contributing 11 Tg to the 27 Tg observed CH4 burden change in late 1991 and early 1992. Key Points We modeled the effect of Pinatubo sulfur on tropospheric photochemistry SO2 absorption and aerosol extinction reduce tropospheric UV levels The tropospheric OH sink of CH4 decreased by 17.8 Tg during June 1991-June 199
    corecore