63 research outputs found

    Einfluss von Methylphenidat auf das Belohnungslernen bei Kindern mit einer Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung

    Get PDF
    Diese Arbeit beschäftigt sich mit dem Einfluss von Methylphenidat auf das Lernen aus Belohnung bei Kindern mit Aufmerksamkeits-Defizit-Hyperaktivitäts-Störung. ADHS geht mit einer Beeinträchtigung der dopaminergen Funktionen im Gehirn einher. Dies spiegelt sich unter anderem in einem verschlechterten Lernen aus Belohnung wieder. Der Wirkstoff Methylphenidat erhöht die Verfügbarkeit von Dopamin und führt somit zu einer Besserung der Symptome bei ADHS. Die Hypothese, dass Methylphenidat ebenfalls das Lernen aus Belohnung verbessert, wurde in dieser Studie untersucht. Dazu wurden in einer Doppel-Blind-Studie 41 männlichen Patienten mit der Diagnose ADHS mit gesunden Kontrollprobanden bezüglich ihres Lernverhaltens aus Belohnung verglichen. Die Belohnungsverarbeitung wurde hierbei anhand eines probabilistischen Lerntests durch ein Computerspiel erfasst. Die Ergebnisse zeigten keine signifikanten Verbesserungen der Lernraten. Die Probanden wiesen unter Methylphenidat jedoch signifikant langsamere Reaktionszeiten auf

    Fluid dynamics and slope stability offshore W-Spitsbergen: Effect of bottom water warming on gas hydrates and slope stability - Cruise No. MSM21/4 - August 12 - September 11, 2012 - Reykjavik (Iceland) - Emden (Germany)

    Get PDF
    The main goal of MSM21/4 was the study of gas hydrate system off Svalbard. We addressed this through a comprehensive scientific programme comprising dives with the manned submersible JAGO, seismic and heat flow measurements, sediment coring, water column biogeochemistry and bathymetric mapping. At the interception of the Knipovich Ridge and the continental margin of Svalbard we collected seismic data and four heat flow measurements. These measurements revealed that the extent of hydrates is significantly larger than previously thought and that the gas hydrate system is influenced by heat from the oceanic spreading centre, which may promote thermogenic methane production and thus explain the large extent of hydrates. At the landward termination of the hydrate stability zone we investigated the mechanisms that lead to degassing by taking sediment cores, sampling of carbonates during dives, and measuring the methane turn-over rates in the water column. It turned out that the observed gas seepage must have been ongoing for a long time and that decadal scale warming is an unlikely explanation for the observed seeps. Instead seasonal variations in water temperatures seem to control episodic hydrate formation and dissociation explaining the location of the observed seeps. The water column above the gas flares is rich in methane and methanotrophic microorganisms turning over most of the methane that escapes from the sea floor. We also surveyed large, until then uncharted parts of the margin in the northern part of the gas hydrate province. Here, we discovered an almost 40 km wide submarine landslide complex. This slide is unusual in the sense that it is not located at the mouth of a cross shelf trough such as other submarine landslides on the glaciated continental margins around the North Atlantic. Thus, the most widely accepted explanation for the origin of such slides, i.e. overpressure development due to deposition of glacial sediments on top of water rich contourites, is not applicable. Instead we find gas-hydrate-related bottom simulating reflectors underneath the headwalls of this slide complex, possibly indicating that subsurface fluid migration plays a major role in its genesis

    Fluxes and fate of dissolved methane released at the seafloor at the landward limit of the gas hydrate stability zone offshore western Svalbard

    Get PDF
    Widespread seepage of methane from seafloor sediments offshore Svalbard close to the landward limit of the gas hydrate stability zone (GHSZ) may, in part, be driven by hydrate destabilization due to bottom water warming. To assess whether this methane reaches the atmosphere where it may contribute to further warming, we have undertaken comprehensive surveys of methane in seawater and air on the upper slope and shelf region. Near the GHSZ limit at ?400 m water depth, methane concentrations are highest close to the seabed, reaching 825 nM. A simple box model of dissolved methane removal from bottom waters by horizontal and vertical mixing and microbially mediated oxidation indicates that ?60% of methane released at the seafloor is oxidized at depth before it mixes with overlying surface waters. Deep waters are therefore not a significant source of methane to intermediate and surface waters; rather, relatively high methane concentrations in these waters (up to 50 nM) are attributed to isopycnal turbulent mixing with shelf waters. On the shelf, extensive seafloor seepage at <100 m water depth produces methane concentrations of up to 615 nM. The diffusive flux of methane from sea to air in the vicinity of the landward limit of the GHSZ is ?4–20 ?mol m?2 d?1, which is small relative to other Arctic sources. In support of this, analyses of mole fractions and the carbon isotope signature of atmospheric methane above the seeps do not indicate a significant local contribution from the seafloor source
    • …
    corecore