436 research outputs found

    Hyperpaths in network based on transit schedules

    Get PDF
    The concept of a hyperpath was introduced for handling passenger strategies in route choice behavior for public transit, especially in a frequency-based transit service environment. This model for handling route choice behavior has been widely used for planning transit services, and hyperpaths are now applied in areas beyond public transit. A hyperpath representing more specific passenger behaviors on a network based on transit schedules is proposed. A link-based time-expanded (LBTE) network for transit schedules is introduced; in the network each link represents a scheduled vehicle trip (or trip segment) with departure time and travel time (or arrival time) between two consecutive stops. The proposed LBTE network reduces the effort to build a network based on transit schedules because the network is expanded with scheduled links. A link-based representation of a hypergraph with existing hyperpath model properties that is directly integrated with the LBTE network is also proposed. Transit passenger behavior was incorporated for transfers in the link-based hyperpath. The efficiency of the proposed hyperpath model was demonstrated. The proposed models were applied on a test network and a real transit network represented by the general specification of Google's transit feed

    Local detouredness: A new phenomenon for modelling route choice and traffic assignment

    Get PDF
    This study introduces the novel concept of local detouredness, i.e. detours on subsections of a route, as a new phenomenon for understanding and modelling route choice. Traditionally, Stochastic User Equilibrium (SUE) traffic assignment models have been concerned with judging the attractiveness of a route by its total route cost. However, through empirical analysis we show that considering solely the global properties of a route is insufficient. We find that it is important to consider local detouredness both when determining realistic and tractable route choice sets and when determining route choice probabilities. For example, analysis of observed route choice data shows that route usage tends to decay with local detouredness, and that there is an apparent limit on the amount of local detouredness seen as acceptable. No existing models can account for this systematically and consistently, which is the motivation for the new route choice model proposed in this paper: the Bounded Choice Model with Local Detour Threshold (BCM-LDT). The BCM-LDT model incorporates the effect of local detouredness on route choice probability, and has an in-built mechanism that assigns zero probabilities to routes violating a bound on total route costs and/or a threshold on local detouredness. Thereby, the model consistently predicts which routes are used and unused. Moreover, the probability expression is closed-form and continuous. SUE conditions for the BCM-LDT are given, and solution existence is proven. Exploiting the special structure of the problem, a novel solution algorithm is proposed where flow averaging is integrated with a modified branch-and-bound method that iteratively column-generates all routes satisfying local and global bounds. Numerical experiments are conducted on small-scale and large-scale networks, establishing that equilibrated solutions can be found and demonstrating the influence of the BCM-LDT parameters on choice set size and flow allocation

    A novel choice model combining utility maximization and the disjunctive decision rules, application to two case studies

    Get PDF
    Most choice models, e.g. Multinomial Logit (MNL), rely on random utility theory, which assumes that a compensatory utility maximization decision rule explains an individual’s choice behaviour. Research has shown, however, that behaviour is sometimes better explained by non-compensatory decision rules. While some research has used Latent Class Choice Models (LCCMs) to account for multiple decision rules, many of them – such as the disjunctive rule – have yet to be explored. This paper formulates, estimates, and evaluates a LCCM that combines the MNL with a Generalised Random Disjunctive Model (GRDM), a new choice model we develop. Addressing deficiencies of existing disjunctive choice models, the GRDM allows for relative importance between attributes and is insensitive to irrelevant attributes. Unlike most non-compensatory models, it is tractable and incorporates random error terms for capturing unobserved heterogeneity across choice situations. The GRDM can be expressed as a Universal Logit (UL) model, which helps derive welfare metrics such as Marginal Rates of Substitution and elasticities and makes it possible to estimate the model with traditional software packages. The LCCM combining the GRDM and the MNL is estimated in two large-scale case studies: cyclists’ route choice and public transport route choice. Results are compared with other relevant LCCM specifications and the individual choice models, where it is found that the MNL + GRDM LCCM provides the best fit to the data. We also interpret the fitted parameters and calculate the Marginal Rates of Substitution, which align with behavioural expectations

    Correlated N-boson systems for arbitrary scattering length

    Full text link
    We investigate systems of identical bosons with the focus on two-body correlations and attractive finite-range potentials. We use a hyperspherical adiabatic method and apply a Faddeev type of decomposition of the wave function. We discuss the structure of a condensate as function of particle number and scattering length. We establish universal scaling relations for the critical effective radial potentials for distances where the average distance between particle pairs is larger than the interaction range. The correlations in the wave function restore the large distance mean-field behaviour with the correct two-body interaction. We discuss various processes limiting the stability of condensates. With correlations we confirm that macroscopic tunneling dominates when the trap length is about half of the particle number times the scattering length.Comment: 15 pages (RevTeX4), 11 figures (LaTeX), submitted to Phys. Rev. A. Second version includes an explicit comparison to N=3, a restructured manuscript, and updated figure

    Effect of age, sex and gender on pain sensitivity: A narrative review

    Get PDF
    © 2017 Eltumi And Tashani. Introduction: An increasing body of literature on sex and gender differences in pain sensitivity has been accumulated in recent years. There is also evidence from epidemiological research that painful conditions are more prevalent in older people. The aim of this narrative review is to critically appraise the relevant literature investigating the presence of age and sex differences in clinical and experimental pain conditions. Methods: A scoping search of the literature identifying relevant peer reviewed articles was conducted on May 2016. Information and evidence from the key articles were narratively described and data was quantitatively synthesised to identify gaps of knowledge in the research literature concerning age and sex differences in pain responses. Results: This critical appraisal of the literature suggests that the results of the experimental and clinical studies regarding age and sex differences in pain contain some contradictions as far as age differences in pain are concerned. While data from the clinical studies are more consistent and seem to point towards the fact that chronic pain prevalence increases in the elderly findings from the experimental studies on the other hand were inconsistent, with pain threshold increasing with age in some studies and decreasing with age in others. Conclusion: There is a need for further research using the latest advanced quantitative sensory testing protocols to measure the function of small nerve fibres that are involved in nociception and pain sensitivity across the human life span. Implications: Findings from these studies should feed into and inform evidence emerging from other types of studies (e.g. brain imaging technique and psychometrics) suggesting that pain in the older humans may have unique characteristics that affect how old patients respond to intervention

    Background rejection in NEXT using deep neural networks

    Get PDF
    [EN] We investigate the potential of using deep learning techniques to reject background events in searches for neutrinoless double beta decay with high pressure xenon time projection chambers capable of detailed track reconstruction. The differences in the topological signatures of background and signal events can be learned by deep neural networks via training over many thousands of events. These networks can then be used to classify further events as signal or background, providing an additional background rejection factor at an acceptable loss of efficiency. The networks trained in this study performed better than previous methods developed based on the use of the same topological signatures by a factor of 1.2 to 1.6, and there is potential for further improvement.The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the Ministerio de Economia y Competitividad of Spain and FEDER under grants CONSOLIDER-Ingenio 2010 CSD2008-0037 (CUP), FIS2014-53371-C04 and the Severo Ochoa Program SEV-2014-0398; GVA under grant PROMETEO/2016/120. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. JR acknowledges support from a Fulbright Junior Research Award.Renner, J.; Farbin, A.; Muñoz Vidal, J.; Benlloch-Rodríguez, J.; Botas, A.; Ferrario, P.; Gómez-Cadenas, J.... (2017). Background rejection in NEXT using deep neural networks. Journal of Instrumentation. 12. https://doi.org/10.1088/1748-0221/12/01/T01004S1

    New insights into the genetic etiology of Alzheimer's disease and related dementias.

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele
    • 

    corecore