16,033 research outputs found

    Near-infrared photoabsorption by C(60) dianions in a storage ring

    Get PDF
    We present a detailed study of the electronic structure and the stability of C(60) dianions in the gas phase. Monoanions were extracted from a plasma source and converted to dianions by electron transfer in a Na vapor cell. The dianions were then stored in an electrostatic ring, and their near-infrared absorption spectrum was measured by observation of laser induced electron detachment. From the time dependence of the detachment after photon absorption, we conclude that the reaction has contributions from both direct electron tunneling to the continuum and vibrationally assisted tunneling after internal conversion. This implies that the height of the Coulomb barrier confining the attached electrons is at least similar to 1.5 eV. For C(60)(2-) ions in solution electron spin resonance measurements have indicated a singlet ground state, and from the similarity of the absorption spectra we conclude that also the ground state of isolated C(60)(2-) ions is singlet. The observed spectrum corresponds to an electronic transition from a t(1u) lowest unoccupied molecular orbital (LUMO) of C(60) to the t(1g) LUMO+1 level. The electronic levels of the dianion are split due to Jahn-Teller coupling to quadrupole deformations of the molecule, and a main absorption band at 10723 cm(-1) corresponds to a transition between the Jahn-Teller ground states. Also transitions from pseudorotational states with 200 cm(-1) and (probably) 420 cm(-1) excitation are observed. We argue that a very broad absorption band from about 11 500 cm(-1) to 13 500 cm(-1) consists of transitions to so-called cone states, which are Jahn-Teller states on a higher potential-energy surface, stabilized by a pseudorotational angular momentum barrier. A previously observed, high-lying absorption band for C(60)(-) may also be a transition to a cone state

    A practical scheme for error control using feedback

    Get PDF
    We describe a scheme for quantum error correction that employs feedback and weak measurement rather than the standard tools of projective measurement and fast controlled unitary gates. The advantage of this scheme over previous protocols (for example Ahn et. al, PRA, 65, 042301 (2001)), is that it requires little side processing while remaining robust to measurement inefficiency, and is therefore considerably more practical. We evaluate the performance of our scheme by simulating the correction of bit-flips. We also consider implementation in a solid-state quantum computation architecture and estimate the maximal error rate which could be corrected with current technology.Comment: 12 pages, 3 figures. Minor typographic change

    Probing the quantumness of channels with mixed states

    Full text link
    We present an alternative approach to the derivation of benchmarks for quantum channels, such as memory or teleportation channels. Using the concept of effective entanglement and the verification thereof, a testing procedure is derived which demands very few experimental resources. The procedure is generalized by allowing for mixed test states. By constructing optimized measure & re-prepare channels, the benchmarks are found to be very tight in the considered experimental regimes.Comment: 11 Pages, 9 Figures, published versio

    Measuring Polynomial Invariants of Multi-Party Quantum States

    Get PDF
    We present networks for directly estimating the polynomial invariants of multi-party quantum states under local transformations. The structure of these networks is closely related to the structure of the invariants themselves and this lends a physical interpretation to these otherwise abstract mathematical quantities. Specifically, our networks estimate the invariants under local unitary (LU) transformations and under stochastic local operations and classical communication (SLOCC). Our networks can estimate the LU invariants for multi-party states, where each party can have a Hilbert space of arbitrary dimension and the SLOCC invariants for multi-qubit states. We analyze the statistical efficiency of our networks compared to methods based on estimating the state coefficients and calculating the invariants.Comment: 8 pages, 4 figures, RevTex4, v2 references update

    Experimental demonstration of the stability of Berry's phase for a spin-1/2 particle

    Full text link
    The geometric phase has been proposed as a candidate for noise resilient coherent manipulation of fragile quantum systems. Since it is determined only by the path of the quantum state, the presence of noise fluctuations affects the geometric phase in a different way than the dynamical phase. We have experimentally tested the robustness of Berry's geometric phase for spin-1/2 particles in a cyclically varying magnetic field. Using trapped polarized ultra-cold neutrons it is demonstrated that the geometric phase contributions to dephasing due to adiabatic field fluctuations vanish for long evolution times.Comment: 4 pages, 4 figure

    Driven harmonic oscillator as a quantum simulator for open systems

    Get PDF
    We show theoretically how a driven harmonic oscillator can be used as a quantum simulator for non-Markovian damped harmonic oscillator. In the general framework, the results demonstrate the possibility to use a closed system as a simulator for open quantum systems. The quantum simulator is based on sets of controlled drives of the closed harmonic oscillator with appropriately tailored electric field pulses. The non-Markovian dynamics of the damped harmonic oscillator is obtained by using the information about the spectral density of the open system when averaging over the drives of the closed oscillator. We consider single trapped ions as a specific physical implementation of the simulator, and we show how the simulator approach reveals new physical insight into the open system dynamics, e.g. the characteristic quantum mechanical non-Markovian oscillatory behavior of the energy of the damped oscillator, usually obtained by the non-Lindblad-type master equation, can have a simple semiclassical interpretation.Comment: 10 pages, 4 figures. V2: Minor modifications and added 2 appendixes for more details about calculation

    Characterization of Binary Constraint System Games

    Full text link
    We consider a class of nonlocal games that are related to binary constraint systems (BCSs) in a manner similar to the games implicit in the work of Mermin [N.D. Mermin, "Simple unified form for the major no-hidden-variables theorems," Phys. Rev. Lett., 65(27):3373-3376, 1990], but generalized to n binary variables and m constraints. We show that, whenever there is a perfect entangled protocol for such a game, there exists a set of binary observables with commutations and products similar to those exhibited by Mermin. We also show how to derive upper bounds strictly below 1 for the the maximum entangled success probability of some BCS games. These results are partial progress towards a larger project to determine the computational complexity of deciding whether a given instance of a BCS game admits a perfect entangled strategy or not.Comment: Revised version corrects an error in the previous version of the proof of Theorem 1 that arises in the case of POVM measurement

    Resilient Quantum Computation in Correlated Environments: A Quantum Phase Transition Perspective

    Full text link
    We analyze the problem of a quantum computer in a correlated environment protected from decoherence by QEC using a perturbative renormalization group approach. The scaling equation obtained reflects the competition between the dimension of the computer and the scaling dimension of the correlations. For an irrelevant flow, the error probability is reduced to a stochastic form for long time and/or large number of qubits; thus, the traditional derivation of the threshold theorem holds for these error models. In this way, the ``threshold theorem'' of quantum computing is rephrased as a dimensional criterion.Comment: 4.1 pages, minor correction and an improved discussion of Eqs. (4) and (14

    Lumbar epidural fentanyl: segmental spread and effect on temporal summation and muscle pain

    Get PDF
    Background. Despite extensive use, different aspects of the pharmacological action of epidural fentanyl have not been clarified. We applied a multi‐modal sensory test procedure to investigate the effect of epidural fentanyl on segmental spread, temporal summation (as a measure for short‐lasting central hyperexcitability) and muscle pain. Methods. Thirty patients received either placebo, 50 or 100 ”g single dose of fentanyl epidurally (L2-3), in a randomized, double‐blind fashion. Heat pain tolerance thresholds at eight dermatomes from S1 to fifth cranial nerve (assessment of segmental spread), pain threshold to transcutaneous repeated electrical stimulation of the sural nerve (assessment of temporal summation) and pain intensity after injection of hypertonic saline into the tibialis anterior muscle (assessment of muscle pain) were recorded. Results. Fentanyl 100 ”g, but not 50 ”g, produced analgesia to heat stimulation only at L2. Surprisingly, no effect at S1 was detected. Both fentanyl doses significantly increased temporal summation threshold and decreased muscle pain intensity. Conclusions. The findings suggest that a single lumbar epidural dose of fentanyl should be injected at the spinal interspace corresponding to the dermatomal site of pain. Increased effect on L2 compared with S1 suggests that drug effect on spinal nerve roots and binding to opioid receptors on the dorsal root ganglia may be more important than traditionally believed for the segmental effect of epidurally injected fentanyl. Epidural fentanyl increases temporal summation threshold and could therefore contribute to prevention and treatment of central hypersensitivity states. I.M. injection of hypertonic saline is a sensitive technique for detecting the analgesic action of epidural opioids. Br J Anaesth 2003; 90: 467-7

    Are We All in the Same Boat? The Role of Perceptual Distance in Organizational Health Interventions

    Get PDF
    The study investigates how agreement between leaders' and their team's perceptions influence intervention outcomes in a leadership-training intervention aimed at improving organizational learning. Agreement, i.e. perceptual distance was calculated for the organizational learning dimensions at baseline. Changes in the dimensions from pre-intervention to post-intervention were evaluated using polynomial regression analysis with response surface analysis. The general pattern of the results indicated that the organizational learning improved when leaders and their teams agreed on the level of organizational learning prior to the intervention. The improvement was greatest when the leader's and the team's perceptions at baseline were aligned and high rather than aligned and low. The least beneficial scenario was when the leader's perceptions were higher than the team's perceptions. These results give insights into the importance of comparing leaders' and their team's perceptions in intervention research. Polynomial regression analyses with response surface methodology allow three-dimensional examination of relationship between two predictor variables and an outcome. This contributes with knowledge on how combination of predictor variables may affect outcome and allows studies of potential non-linearity relating to the outcome. Future studies could use these methods in process evaluation of interventions
    • 

    corecore