We show theoretically how a driven harmonic oscillator can be used as a
quantum simulator for non-Markovian damped harmonic oscillator. In the general
framework, the results demonstrate the possibility to use a closed system as a
simulator for open quantum systems. The quantum simulator is based on sets of
controlled drives of the closed harmonic oscillator with appropriately tailored
electric field pulses. The non-Markovian dynamics of the damped harmonic
oscillator is obtained by using the information about the spectral density of
the open system when averaging over the drives of the closed oscillator. We
consider single trapped ions as a specific physical implementation of the
simulator, and we show how the simulator approach reveals new physical insight
into the open system dynamics, e.g. the characteristic quantum mechanical
non-Markovian oscillatory behavior of the energy of the damped oscillator,
usually obtained by the non-Lindblad-type master equation, can have a simple
semiclassical interpretation.Comment: 10 pages, 4 figures. V2: Minor modifications and added 2 appendixes
for more details about calculation