1,124 research outputs found

    Disruption Management of Rolling Stock in Passenger Railway Transportation

    Get PDF
    This paper deals with real-time disruption management of rolling stock in passenger railway transportation. We present a generic framework for modeling disruptions in railway rolling stock schedules. The framework is presented as an online combinatorial decision problem where the uncertainty of a disruption is modeled by a sequence of information updates. To decompose the problem we propose a rolling horizon approach where only rolling stock decisions within a certain time horizon from the time of rescheduling are taken into account. The schedules are then revised as the situation progresses and more accurate information becomes available. We extend an existing model for rolling stock scheduling to the specific requirements of the real-time case and apply it in the rolling horizon framework. We perform computational tests on instances constructed from real life cases and explore the consequences of different settings of the approach for the trade-off between solution quality and computation time

    The prevalence and impact of Fusarium Head Blight pathogens and mycotoxins on malting barley quality in UK

    Get PDF
    Fusarium head blight (FHB) caused by Fusarium and Microdochium species can significantly affect the yield of barley grain as well as the quality and safety of malt and beer. The present study provides new knowledge on the impacts of the FHB pathogen complex on the malting and brewing quality parameters of naturally infected barley. Quantitative real-time PCR and liquid chromatography double mass spectrometry were used to quantify the predominant FHB pathogens and Fusarium mycotoxins, respectively, in commercially grown UK malting barley samples collected between 2007 and 2011. The predominant Fusarium species identified across the years were F. poae, F. tricinctum and F. avenaceum. Microdochium majus was the predominant Microdochium species in 2007, 2008, 2010 and 2011 whilst Microdochium nivale predominated in 2009. Deoxynivalenol and zearalenone quantified in samples collected between 2007 and 2009 were associated with F. graminearum and F. culmorum, whilst HT-2 and T-2, and nivalenol in samples collected between 2010 and 2011 correlated positively with F. langsethiae and F. poae, respectively. Analysis of the regional distribution and yearly variation in samples from 2010 to 2011 showed significant differences in the composition of the FHB species complex. In most regions (Scotland, the South and North of England) the harvest in 2010 had higher concentrations of Fusarium spp. than in 2011, although no significant difference was observed in the Midlands between the two years. Microdochium DNA was significantly higher in 2011 and in the North of England and Scotland compared to the South or Midlands regions. Pathogens of the FHB complex impacted negatively on grain yield and quality parameters. Thousand grain weight of malting barley was affected significantly by M. nivale and M. majus whilst specific weight correlated negatively with F. avenaceum and F. graminearum. To determine the impact of sub-acute infections of the identified Fusarium and Microdochium species on malting and brewing quality of naturally infected samples, selected malting barley cultivars (Optic, Quench and Tipple) were micromalted and subjected to malt and wort analysis of key quality parameters. F. poae and M. nivale decreased germinative energy and increased water sensitivity of barley. The fungal biomass of F. poae and F. langsethiae correlated with increased wort free amino nitrogen and with decreased extract of malt. DNA of M. nivale correlated with increased malt friability as well as decreased wort filtration volume. The findings of this study indicate that the impact of species such as the newly emerging F. langsethiae, as well as F. poae and the two non-toxigenic Microdochium species should be considered when evaluating the quality of malting barley. © 2014

    The Majorization Arrow in Quantum Algorithm Design

    Get PDF
    We apply majorization theory to study the quantum algorithms known so far and find that there is a majorization principle underlying the way they operate. Grover's algorithm is a neat instance of this principle where majorization works step by step until the optimal target state is found. Extensions of this situation are also found in algorithms based in quantum adiabatic evolution and the family of quantum phase-estimation algorithms, including Shor's algorithm. We state that in quantum algorithms the time arrow is a majorization arrow.Comment: REVTEX4.b4 file, 4 color figures (typos corrected.

    Rolling Stock Rescheduling in Passenger Railways: Applications in short-term planning and in disruption management

    Get PDF
    Modern society is highly dependent on a reliable railway system for workforce mobility and easy access to the cities. However, the daily operations of a large passenger railway system are subject to unexpected disruptions such as rolling stock breakdowns or malfunctioning infrastructure. In a disrupted situation, the railway operator must adapt the timetable, rolling stock and crew to the modified conditions. This adaptation of resource allocations requires the solution of complex combinatorial problems in very short time and thus represents a major challenge for the involved dispatchers. In this thesis we develop models and solution methods for the rescheduling of the rolling stock during disruptions. The models incorporate service aspects (such as seat capacity), efficiency aspects (such as number of kilometers driven by the rolling stock), and process related aspects (such as the need for night-time relocation of rolling stock). The thesis contains applications of the developed models in three different contexts. First, we present a framework for applying the rescheduling models in the highly uncertain environment of railway disruption management, and we demonstrate the trade-off between computation time and solution quality. Second, we embed the rolling stock rescheduling models in a simulation framework to account for the dynamic passenger behavior during disruptions. This framework allows us to significantly decrease the delays experienced by passengers. Third, we apply the rescheduling models to real-life planning problems from the short-term planning department of the Netherlands Railways. The models lead to a considerable speed-up of the process and significant savings

    Rescheduling of Railway Rolling Stock with Dynamic Passenger Flows

    Get PDF
    Traditional rolling stock rescheduling applications either treat passengers as static objects whose influence on the system is unchanged in a disrupted situation, or they treat passenger behavior as a given input. In case of disruptions however, we may expect the flow of passengers to change significantly. In this paper we present a model for passenger flows during disruptions and we describe an iterative heuristic for optimizing the rolling stock to the disrupted passenger flows. The model is tested on realistic problem instances of NS, the major operator of passeng

    Experimental considerations of acute heat stress assays to quantify coral thermal tolerance

    Get PDF
    Understanding the distribution and abundance of heat tolerant corals across seascapes is imperative for predicting responses to climate change and to support novel management actions. Thermal tolerance is variable in corals and intrinsic and extrinsic drivers of tolerance are not well understood. Traditional experimental evaluations of coral heat and bleaching tolerance typically involve ramp-and-hold experiments run across days to weeks within aquarium facilities with limits to colony replication. Field-based acute heat stress assays have emerged as an alternative experimental approach to rapidly quantify heat tolerance in many samples yet the role of key methodological considerations on the stress response measured remains unresolved. Here, we quantify the effects of coral fragment size, sampling time point, and physiological measures on the acute heat stress response in adult corals. The effect of fragment size differed between species (Acropora tenuis and Pocillopora damicornis). Most physiological parameters measured here declined over time (tissue colour, chlorophyll-a and protein content) from the onset of heating, with the exception of maximum photosynthetic efficiency (Fv/Fm) which was surprisingly stable over this time scale. Based on our experiments, we identified photosynthetic efficiency, tissue colour change, and host-specific assays such as catalase activity as key physiological measures for rapid quantification of thermal tolerance. We recommend that future applications of acute heat stress assays include larger fragments (> 9 cm2) where possible and sample between 10 and 24 h after the end of heat stress. A validated high-throughput experimental approach combined with cost-effective genomic and physiological measurements underpins the development of markers and maps of heat tolerance across seascapes and ocean warming scenarios

    An entanglement monotone derived from Grover's algorithm

    Get PDF
    This paper demonstrates that how well a state performs as an input to Grover's search algorithm depends critically upon the entanglement present in that state; the more entanglement, the less well the algorithm performs. More precisely, suppose we take a pure state input, and prior to running the algorithm apply local unitary operations to each qubit in order to maximize the probability P_max that the search algorithm succeeds. We prove that, for pure states, P_max is an entanglement monotone, in the sense that P_max can never be decreased by local operations and classical communication.Comment: 7 page

    Efficient scheme for one-way quantum computing in thermal cavities

    Full text link
    We propose a practical scheme for one-way quantum computing based on efficient generation of 2D cluster state in thermal cavities. We achieve a controlled-phase gate that is neither sensitive to cavity decay nor to thermal field by adding a strong classical field to the two-level atoms. We show that a 2D cluster state can be generated directly by making every two atoms collide in an array of cavities, with numerically calculated parameters and appropriate operation sequence that can be easily achieved in practical Cavity QED experiments. Based on a generated cluster state in Box(4)^{(4)} configuration, we then implement Grover's search algorithm for four database elements in a very simple way as an example of one-way quantum computing.Comment: 6 pages, 3 figure

    Life cycle modelling of environmental impacts of application of processed organic municipal solid waste on agricultural land (EASEWASTE)

    Get PDF
    A model capable of quantifying the potential environmental impacts of agricultural application of composted or anaerobically digested source-separated organic municipal solid waste (MSW) is presented. In addition to the direct impacts, the model accounts for savings by avoiding the production and use of commercial fertilizers. The model is part of a larger model, Environmental Assessment of Solid Waste Systems and Technology (EASEWASTE), developed as a decisionsupport model, focusing on assessment of alternative waste management options. The environmental impacts of the land application of processed organic waste are quantified by emission coefficients referring to the composition of the processed waste and related to specific crop rotation as well as soil type. The model contains several default parameters based on literature data, field experiments and modelling by the agro-ecosystem model, Daisy. All data can be modified by the user allowing application of the model to other situations. A case study including four scenarios was performed to illustrate the use of the model. One tonne of nitrogen in composted and anaerobically digested MSW was applied as fertilizer to loamy and sandy soil at a plant farm in western Denmark. Application of the processed organic waste mainly affected the environmental impact categories global warming (0.4–0.7 PE), acidification (–0.06 (saving)–1.6 PE), nutrient enrichment (–1.0 (saving)–3.1 PE), and toxicity. The main contributors to these categories were nitrous oxide formation (global warming), ammonia volatilization (acidification and nutrient enrichment), nitrate losses (nutrient enrichment and groundwater contamination), and heavy metal input to soil (toxicity potentials). The local agricultural conditions as well as the composition of the processed MSW showed large influence on the environmental impacts. A range of benefits, mainly related to improved soil quality from long-term application of the processed organic waste, could not be generally quantified with respect to the chosen life cycle assessment impact categories and were therefore not included in the model. These effects should be considered in conjunction with the results of the life cycle assessment
    • …
    corecore