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Abstract

Traditional rolling stock rescheduling applications either treat pas-
sengers as static objects whose influence on the system is unchanged in
a disrupted situation, or they treat passenger behavior as a given input.
In case of disruptions however, we may expect the flow of passengers
to change significantly.

In this paper we present a model for passenger flows during disrup-
tions and we describe an iterative heuristic for optimizing the rolling
stock to the disrupted passenger flows. The model is tested on realistic
problem instances of NS, the major operator of passenger trains in the
Netherlands.

Keywords: passenger railways, disruption management, passenger flows,
rolling stock.

1 Introduction

Most rolling stock rescheduling applications in the literature either treat
passengers as static objects whose influence on the system is unchanged in
a disrupted situation, or they treat passenger behavior as a given input.

There are indeed situations where these assumptions on passengers are
appropriate. When the changes to the system caused by a disruption are
only light or moderate, we may assume that passenger demand is unchanged.
Additionally, if suitable historical data is available we may assume that
passenger behavior is given as input. In other situations, however, we may
expect the flow of passengers to change significantly.

The changed demand for capacity may be alleviated by rescheduling the
rolling stock, thus transferring capacity from low demand trains to high de-
mand trains. Any attempt to reschedule the rolling stock implies a balance
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between the rescheduling effort and the corresponding service level. In this
paper we present a model for passenger flows during disruptions and we de-
scribe an iterative heuristic for optimizing the rolling stock to the disrupted
passenger flows.

2 Models for passenger flows in various logistic

settings

The dynamics of passenger flows have been studied in several logistic settings
such as railways, airlines and transit networks, and with different focus such
as line planning, revenue management and disruption management. We here
list a number of references to studies in the literature, discuss their methods
and assumptions, and compare them to the problem studied in this paper.

Bratu and Barnhart (2006) study disruption management at a major
airline company. They present MIP models that incorporate decisions on
aircraft, crew and passenger recovery with the options of postponing or can-
celing flight legs. The objective is to simultaneously minimize operating
costs, estimated passenger delay and disruption costs. The operator is as-
sumed to have full control of the passenger flow in the network and can thus
decide how passengers are matched with available capacity.

The assumptions on operator control of assignment of passengers may
be realistic in some railway settings. Consider a railway system where a
seat reservation is required to board a train. In that case the operator does
have control of the matching of passengers to trains. This contrasts the
situation in the railway network of NS where the operator decides how to
assign capacity to the timetable, but passengers decide how to utilize the
available capacity.

Dumas and Soumis (2008) present a model for the passenger flow in air-
line networks given data on the demand between pairs of origin and desti-
nation and the temporal distribution of bookings. Furthermore, the authors
assume knowledge on the spill of passengers between itineraries, i.e. if a
booking for a certain set of flights is rejected they know the proportion of
passengers who would attempt to book a certain alternative set of flights.

Dumas et al. (2009) use the above passenger flow model for the fleet
assignment problem. This is the problem of assigning a fleet of aircraft
to a set of flights while maximizing expected revenue. In earlier models for
the fleet assignment problem fixed demands for itineraries are assumed given
(see Hane et al. (1995) and Abara (1989)), and the problem can be expressed
by a large MIP model. But since Dumas et al. (2009) use a complex non-
linear passenger flow model, they separate the fleet assignment decisions
and the computation of the revenue from the resulting passenger flow. The
computations are performed in an iterative approach where in each iteration
a fleet assignment is computed and the passenger flow model is used to
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evaluate the quality of the current assignment and estimate the impact of
changing a decision in the next iteration. The iterative approach presented
by Dumas et al. (2009) is used as an inspiration for the solution approach
presented in this paper. We do, however, utilize another model for the
passenger flow and the context is significantly different; revenue management
in an airline versus disruption management in a railway network.

Passenger flow modeling in urban transit networks is a well studied field.
Oppenheim (1995) gives a comprehensive overview and discusses the behav-
ioral approach in which travelers are assumed to make travel choices which
are “best” for them. In this approach passengers can be aggregated by
temporal and spatial origin and destination. The simplifications obtained
through this aggregation comes at the cost of information on the individual’s
traveling choices.

The delay management problem considers the decision of deliberately
delaying the departure of a vehicle to allow passengers on delayed arriving
vehicles to maintain their connections. The problem is related to the prob-
lem studied in this paper as both problems share the goal of minimizing
passenger delays. However, vehicle capacities are generally not considered
in the models in literature. We refer to Ginkel and Schöbel (2007), Giovanni
et al. (2007), and Schachtebeck (2010) for an overview of delay management.

Passenger flows are also considered in the strategic railway planning
phase when the line planning is conducted. In this setting the passenger
flow is considered aggregated by origin/destination pairs over the entire
day. Line planning then amounts to determining service lines that balance
operational cost and service according to the expected passenger flows. A
number of references to literature on line planning can be found in Nielsen
(2011).

3 Framework for rolling stock rescheduling with

dynamic passenger flows

In this paper we investigate a certain class of disruptions where passenger
behavior may influence the performance of the system considerably. The
problem arises from two observations. The first observation is that in case
of a blockage in the railway network passengers will attempt to get to their
destinations by alternative traveling routes. The second observation is that
passengers who change their routes lead to an altered demand for capacity on
the trains serving the alternative routes. In fact, the demand for capacity on
the alternative routes may be so great that the trains cannot accommodate
all passengers leading to further delays and instability of the system.

The problem of rescheduling the rolling stock while accounting for the
dynamics of passenger flows can be stated as the following generic optimiza-
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Figure 1: Iterative procedure for solving the rolling stock
rescheduling problem with dynamic passenger flows.

tion problem.

min c(x) + d(y)

subject to

x ∈ X

y = f(x) ∈ Y

where X is the set of rolling stock assignments to the timetable and Y is
the set of feasible passenger flows. The function f : X → Y returns the
expected passenger flow for a given assignment of rolling stock x ∈ X . The
cost function consists of two terms; the function c : X → R that gives the
system related cost of a rolling stock assignment, and the function d : Y → R

that gives the service related cost of a passenger flow.

We suggest an approach for solving the above model by iteratively re-
scheduling the rolling stock, simulating the passenger flows, and interpreting
the flows to give an optimization direction for the next iteration. The ap-
proach is sketched in Figure 1. The framework is fully modular, which means
it is possible to exchange any component in the procedure if we want to test
a different set of underlying assumptions on the system.

Given a feasible rolling stock assignment, the expected passenger flow
is computed by means of simulation. We introduce a model for passen-
gers based on a multi commodity flow in an intuitive graph in Section 4.
The model of passenger behavior follows a set of assumptions on passenger
behavior. The assumptions relate to the traveling strategy applied by the
passengers and to the interaction of the passengers when competing for ca-
pacity in the trains. We describe a simulation algorithm that implements
this set of assumptions on passenger behavior in Section 5.

Based on the expected passenger flows computed in the simulation step,
a feedback mechanism creates an optimization function for the next itera-
tion. This function penalizes the assignment of rolling stock with too little
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capacity compared to the demand specified by the expected passenger flows.
In Section 6 we discuss the design of such a feedback mechanism.

The optimization step involves assigning the rolling stock to the trains
while taking the system related costs into account as well as the service
related costs given by the feedback mechanism. Chapter 3 of Nielsen (2011)
describes in detail how to adapt the Composition Model to this purpose.

Starting the iterative approach

We start the iterative procedure by performing the optimization step. Since
no feedback from earlier iterations is available we only use the goals related to
the system as objective in this first step. Based on the resulting assignment
of capacity we perform the simulation step and compute the feedback for
the next round of optimization.

Stopping criterion

We do not claim any guarantee on the performance of the heuristic iterative
approach and there is therefore no natural stopping criterion. However,
since the approach may be used in a time critical environment we could
terminate the process when a time limit is reached or perform a fixed number
of iterations. Alternatively, we could continue until no improvement is found
during a number of iterations.

In our tests we limit ourselves to the simple stopping criterion of using
a fixed number of iterations. In this way an acceptable number of solutions
are visited within reasonable computation time.

4 Modeling the passenger flow

The model for passenger behavior relies on the following assumptions on
individual passengers. A passenger enters the railway system at a specific
time and wants to travel from an origin station to a destination station. If
the passenger does not reach his destination within a certain time interval,
we assume the passenger leaves the system and either gives up the travel
or pursues another mode of transportation. We call the last time instant
at which a passenger will accept to arrive the deadline of the passenger.
Furthermore, each passenger has a traveling strategy for how to travel in the
network. This strategy decides which trains he attempts to board given the
available information on the state of the system.

The deadline represents the time at which a passenger leaves the system
to either give up the intended travel or find a different mode of transporta-
tion. The deadline thereby implies that passengers are not willing to wait
endlessly to get to their destination. When a passenger leaves the system
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due to the deadline it represents both a direct monetary cost for the op-
erator as the passenger may be eligible for compensation, and an indirect
monetary cost through the loss of goodwill.

Rather than modeling every single passenger in the system, we aggregate
passengers with the same characteristics into passenger groups. Let P be
the set of passenger groups. A passenger group p ∈ P has size np, and enters
the system at time τp at origin station op. The group has destination station
dp and deadline t̃p. The group uses traveling strategy Sp which is described
in further detail in Section 4.2.

4.1 The passenger graph

The passengers travel in the time expanded graph defined by the timetable.
We define the passenger graph, G = (V,A), in the following way. Let S be
the set of stations and let T be the set of trips. We add a node to the graph
for each departure or arrival of a train at a station. Then a node denotes a
station s ∈ S at a specific time τ . The set of nodes is thus defined as the
set V :

V = {(s, τ) | a train departs from or arrives at station s ∈ S at time τ}

The set of arcs consists of two kinds of arcs, the trip arcs and the time arcs.
A trip arc denotes a train traveling from one station to another whereas a
time arc exists between every pair of consecutive nodes at the stations to
denote waiting time at the station:

A = {(u, v) ∈ V × V | a train departs at time τ from station s where

u = (s, τ) and arrives at station s′ at time τ ′ where v = (s′, τ ′)
}

∪
{

(u, v) ∈ V × V | u = (s, τ), v = (s, τ ′) where there does not

exist a node w = (s, τ̃) with τ < τ̃ < τ ′
}

The trains have a limited capacity depending on the rolling stock assigned
to them. We define the capacity of a trip arc as the maximum number of
passengers the train can accommodate according to the safety regulations.
The capacity of a time arc is set to be infinite.

4.2 Traveling strategy

The traveling of a passenger constitutes a path in the passenger graph G.
The traveling strategy Sp of a passenger group p ∈ P determines how the
passengers in the group want to travel. It is a function Sp : V → Paths(G)
from the nodes to the set Paths(G) of directed paths in G. The path given
by Sp(v) denotes the preferred traveling path in the network when the group
p is situated at node v. The definition of the traveling strategy Sp allows the
passenger group to dynamically change its path in the event of a disruption
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i.e. a change in the structure of the graph. Note that Sp could be generalized
to return a distribution of the passengers on a set of paths. But we limit
this study to the special case where the traveling strategy implies that all
passengers in the group prefer the same path.

The trip arcs in the graph have finite capacity so it may not be possible
for all passengers in a group to travel with the same arc. This causes the
passenger groups to interact when boarding the train as they compete for
the scarce capacity. Once a passenger is in a train he occupies the capac-
ity until he leaves the train and does therefore not have to compete with
other passengers who attempt to board the train later. The assumptions on
the interaction of the passengers are discussed in Section 5.1. Due to the
interaction, the traveling of the passengers in a group p implies a network
flow in the passenger graph rather than just a path. The flow originates
from a source node (op, τp) ∈ V and flows to a set of nodes later in time.
The combination of the flows of all the passenger groups constitutes a multi
commodity flow in the passenger graph.

4.3 The quality of a passenger flow

The quality of the passenger flow is measured by several criteria;

• Whether trains are overcrowded.

• Whether passengers are delayed compared to their expected arrival
time.

• Whether passengers arrive at all at their destination station within
their set deadline.

In this study we limit ourselves to the two last criteria i.e. delays and arrival
within the deadline. More specifically, we define the inconvenience of a
passenger as the number of minutes of delay experienced by the passenger
plus a penalty for reaching the deadline. This penalty may then depend on
the time of day, and whether the passenger can reach the destination by other
means of transportation. In our experiments we penalize a passenger leaving
the system by the number of minutes between the expected arrival time with
the intended traveling path and the deadline. We define the overall service
objective as the sum of the inconvenience experienced by each passenger.

5 Simulating the passenger flow

We designed a deterministic simulation algorithm to calculate the expected
passenger flow. In this section we account for our assumptions on passenger
behavior and then we present the simulation algorithm.
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5.1 Assumptions

For the simulation of passenger behavior, we make assumptions on three key
elements: (i) What information is available to the passengers? (ii) Which
traveling strategy do passengers apply and how do they use the available in-
formation? (iii) How do passengers interact? We here discuss the assump-
tions we applied to these aspects and their implications on the practical
applicability of our approach. We emphasize that the approach is modular
which allows us to replace the strategy and interaction rules by any other
set of assumptions.

Information

We assume that passengers know the timetable i.e. they know the departure
and arrival times of all trains. In addition they know, at the occurrence of
a disruption, which trains are canceled. Note that passengers do not know
anything about cancellations before the disruption occurs. Furthermore,
they do not know anything about the utilization of the capacity of the
trains in the network either, and therefore they do not have any knowledge
of whether they are able to board trains on their traveling path.

The assumption that all passengers know all departure and arrival times
of all trains is a reasonable assumption since they are published in the
timetable. However, when a disruption occurs there may be some uncer-
tainty about the exact departure times of trains affected by the disruption.
In this case it may be overly optimistic to assume knowledge of the exact
process times. The assumption that passengers do not have any knowledge
about the availability of capacity in the trains before attempting to board
is realistic in a railway system where passengers cannot reserve capacity
beforehand, and capacity is used on a first come first serve basis.

Strategy

We assume that the passengers in group p want to get to their destination
as fast as possible. This means that they prefer traveling via a path in
the passenger graph from the node (op, τp) to a node (dp, τ) with smallest
possible τ . If several such paths exist, the passengers prefer the path that
involves the smallest number of transfers from one train to another. And
again, if several such paths exist the passengers prefer the path with the
earliest departure time.

We illustrate the assumptions by an example in Figure 2. The passenger
graph is based on five trips t1, . . . , t5 from station O to station D of which
trips t1, t2 and t4 have half an hour of traveling time whereas trips t3 and t5
take only 20 minutes. The nodes are named (s, τ) representing station s at
time τ . Trip arcs are represented by solid arcs and time arcs are represented
by dashed arcs.
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time

(O, 10:00) (O, 10:30)(O, 10:35) (O, 11:00)(O, 11:10)

(D, 10:30) (D, 10:55)(D, 11:00) (D, 11:30)

t1 t2 t3 t4 t5

p p
′

p
′′

Figure 2: Part of a passenger graph with four trips from station
O to station D. The gray arrows below the graph show when
the three example passenger groups enter the system.

A passenger group p traveling from origin op = O to destination dp =
D starting at time τp = 10:00 will thus prefer traveling with trip arc
t1. A passenger group p′ also traveling from origin op′ = O to destina-
tion dp′ = D starting at time τp′ = 10:30 will prefer waiting on time arc
(O, 10:30)(O, 10:35) and then travel with trip arc t3 rather than travel with
t2. On the other hand, a passenger group p′′ also traveling from traveling
op′′ = O to destination dp′′ = D starting at time τp′′ = 11:00 will travel with
trip arc t4 rather than wait for t5 as they have the same arrival time.

It is also part of the traveling strategy of a passenger group to react to
the possibility that they may not reach their destination within the deadline.
This is achieved by assuming that if a passenger group p is about to board
a train that arrives after the deadline t̃p, the passenger group will choose
to leave the system rather than board the train. This behavior represents a
passenger group choosing to either give up their intended travel or finding
other means of transportation.

The assumed traveling strategy does not apply to all passengers in prac-
tice, some passengers may indeed choose for a later arrival time if it incurs
fewer transfers, but in general passengers are expected to go for the earlier
arrival time.

For the passengers leaving the system when they cannot reach their des-
tination within their deadline, we recognize that passengers may have very
different behaviors on when and where to leave the system. However, we
would not expect passengers to stay in the system forever either. Model-
ing the behavior of leaving the system through a deadline thus enables us
to track passengers who are severely affected by the state of the railway
system and thereby represent a significant loss of goodwill. Note that the
introduction of a deadline is not a limitation to the modeling power of the
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approach since, if the deadline is set sufficiently high, passengers will never
leave the system at other stations than their destination.

Interaction

Passengers interact when attempting to board a train, in the sense that
they compete for the limited capacity available in the train. When more
passengers attempt to board a train than the available capacity allows for,
only a portion of the passengers will enter the train. We assume that the
number of passengers from each group who board a train is relative to the
size of the group. Suppose passenger groups p1, . . . , pk attempt to board a
trip arc a at node v with capacity c. Group pi has size npi and the combined
size of the passenger groups is thus

n =
k

∑

i=1

npi

If n > c then fpi = c · npi/n passengers from group pi board the train.
The number of people from a group boarding a train may be fractional but
that is not problematic since the train capacities are several hundreds and
the contribution of fractional flows are therefore neglectable. Therefore we
choose not to implement any tie breaking rule.

If not all passengers from group pi are able to board a departing train
then the boarded passengers as well as the rejected passengers will continue
their journey according to their traveling strategy. The boarded passengers
will constitute a flow of value fpi on arc a whereas the remaining npi − fpi
passengers from the group will stay at node v and attempt to travel to dpi
according to their strategy Spi . When some passengers from a passenger
group pi are rejected for boarding it is equivalent to splitting the group into
two groups with the same characteristics except that one is situated at the
arrival node of the arc with size fpi and the other at the departure node
with size npi − fpi .

Passengers who are already in the train and who wish to travel further
do not participate in the above mentioned boarding procedure. This implies
that when a train arrives at a station some of its capacity may already be
in use.

Train capacities

In addition to the above assumptions on passenger behavior, we make one
simplifying assumption on the train capacities. We assume that train capac-
ities are only adapted at terminal stations and never underway. This implies
that in any rolling stock assignment a train always has the same capacity on
two consecutive trips. This further implies that there is enough capacity in
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a departing train to accommodate passengers who are already in the train
and wish to travel further with the same train.

We note that this assumption is not a limitation of the approach since
we can model trains with underway capacity adaptation by introducing par-
allel arcs in the passenger graph: Suppose a train uncouples a unit at an
intermediate station, then parallel arcs can be used until that station. One
set of arcs has capacity corresponding to the uncoupled unit and the other
set of arcs has capacity corresponding to the remaining part of the train.

5.2 Simulation algorithm

We here describe a simulation algorithm that incorporates the above as-
sumptions on traveling strategies and interactions between passengers. To
the best of our knowledge there is no simulation algorithm in literature that
allow us to incorporate exactly these assumptions.

Suppose the set of passenger groups is given by P and we are given a
passenger graph G = (V,A). For the purpose of simulating the passenger
flow under the above assumptions we introduce a four-tuple (p, v, n, a) called
a container. A container denotes n passengers from passenger group p that
are positioned at node v and last traveled by trip arc a. The arc a thus
indicates that the passengers are already in the train that performs a and
do not participate in the boarding procedure if they wish to continue with
the same train. If the passengers have not yet traveled with any arc, the arc
a in the container is set to a dummy value φ.

Algorithm 1 generates the passenger flow under the given assumptions.
In short, the algorithm works by performing a time sweep over all trip arcs in
the passenger graph and moving the containers through the graph according
to the assumptions on traveling strategies and interaction. The algorithm
returns a function f : A×P → R that maps the arcs and passenger groups
to the size of the flow of the particular group on a certain arc.

In the preprocessing in lines 1 – 3 a set S of containers is initialized
to hold each passenger group at its origin station at the time it enters the
network. The set of arcs is then ordered by departure time. If several arcs
depart at the same time their ordering is arbitrary. The function f is set to
0 for all pairs (a, p) ∈ A× P.

In line 4 we iterate over all arcs to apply the boarding procedure at each
departure. In line 5 we denote the departure and arrival nodes of the arc a
by (s, τ) and (r, σ), and in line 6 we denote the predecessor arc of a by apred.
The predecessor arc is serviced by the train immediately before the trip arc
a. This notion is necessary to determine which passengers are already in the
train as they do not have to participate in the boarding procedure. Then
the subset S′ ⊆ S is extracted holding the containers g = (p, (s, τ), n, b) that
are situated at the departure node (s, τ) and want to travel with the trip in
question. Note that this is determined by the traveling strategy Sp of the
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Input: Passenger graph G = (V,A), set of passenger groups P
Output: Flow function f : A× P → R

1 S := {(p, (op, τp), np, φ) | p ∈ P}
2 L := An ordering of A by departure time
3 Let f(a, p) := 0 for all a ∈ A, p ∈ P
4 foreach a ∈ L do

5 Let (s, τ) and (r, σ) be the departure and arrival nodes of a
respectively

6 Let apred be the predecessor of a
7 S′ = {g = (p, (s, τ), n, b) ∈ S | g wants to travel with a}
8 S′′ = {g = (p, (s, τ), n, b) ∈ S′ | g is already in the train (i.e.

b = apred)}
9 c := cap(a)−

∑

g∈S′′ n(g)

10 foreach g ∈ S′ do

11 if b = apred then

12 u := n(g)
13 else

14 u := min{n(g), c · n(g)/
∑

g′∈S′\S′′ n(g′)}

15 S := S\{g}
16 if u < n then

17 Let (s, τ ′) be the next departure node at station s
18 S := S ∪ {(p(g), (s, τ ′), n− u, φ)}

19 if r 6= dp then

20 S := S ∪ {(p(g), (r, σ), u, a)}

21 f(a, p) := f(a, p) + u

22 return f

Algorithm 1: Simulation algorithm for the passenger flow.

passengers in group p. Further, S′′ is the subset of S′ that is already in the
train before it departs.

Next, in line 9, the free capacity of the arc a is calculated by subtracting
from the total capacity cap(a) the capacity taken up by passengers already in
the train. Passengers already in the train are identified by having last trav-
eled by arc apred. Note that the remaining capacity c is always non-negative
as the capacity of the train is unchanged according to our assumptions, i.e.
cap(apred) = cap(a).

In the loop starting from line 10 each relevant container g ∈ S′ is han-
dled. First the number of passengers u who obtain capacity on the train is
calculated. If the passengers are not in the train (line 11) they participate
in the boarding procedure (line 14) or else they all fit in the train (line 12).

The container is then removed from the set S, and replaced by new
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containers as follows. If not all passengers are assigned to the arc (i.e. u < n)
then the n− u rejected passengers from the group remain at the station at
node (s, τ ′) defined as the departure node of the next arc departing from this
station (lines 16 – 18). The number of passengers u that were accepted on
a will reappear at the arrival node (r, σ) unless it is the destination station
of the passengers (lines 19 – 20). Finally the flow function is updated in
line 21.

Example

We return to the example in Figure 2. Let each of the trains assigned to
the five trips have a capacity of 100, and let P = {p1, p2} consist of two
passenger groups with origin op1 = op2 = O, destination dp1 = dp2 = D,
size np1 = np2 = 100, and deadline sufficiently large. The groups enter the
system at time τp1 = 10:30 and τp2 = 10:35 respectively. According to the
traveling strategies Sp1 and Sp2 both groups prefer traveling by the path in
the passenger graph that uses trip t3. In the simulation the containers are
initialized to

S = {(p1, (O, 10:30), 100, φ), (p2 , (O, 10:35), 100, φ)}

and after processing the outgoing arcs of node (O, 10:30) the set contains

S = {(p1, (O, 10:35), 100, φ), (p2 , (O, 10:35), 100, φ)}.

When processing the arc of trip t3 both groups will attempt to board
the train and according to the assumptions on the boarding procedure
50 passengers from each group will be assigned to the arc thus setting
f(t3, p1) = f(t3, p2) = 50. New containers are inserted at the next rele-
vant node thus resulting in the following set of containers:

S = {(p1, (O, 11:00), 50, φ), (p2 , (O, 11:00), 50, φ)}.

When processing the arc of trip t4 the remaining passengers will be able to
board, thus setting f(t4, p1) = f(t4, p2) = 50.

We can calculate the delays of the involved passenger groups using the
flow f . In the above example 50 passengers from each of the groups p1
and p2 suffered a delay of 35 minutes compared to their initially intended
journeys which results in a total delay of 2 ·50 ·35 = 3500 delay minutes. We
observe that the scarcity of capacity in the trains combined with the greedy
traveling strategy of passengers may lead to delays. In our experiments we
choose to penalize delay minutes uniformly although one may argue that
longer delays are worse than several small delays.
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5.3 Implementation issues

In addition to the generic assumptions on passenger behavior implemented
in the simulation algorithm 1 there are several other issues to be taken into
account. Those are primarily related to assumptions on special cases and
implementation issues.

The traveling strategy of the passengers is implemented as a shortest
path algorithm in the passenger graph. The shortest path search can be
performed in linear time since the passenger graph is acyclic. In the imple-
mentation we store the desired traveling path with the container to avoid
recalculating the path several times. Only when passengers are rejected in
the boarding procedure we need to recompute their path.

The occurrence of a disruption is incorporated in the simulation algo-
rithm by changing the passenger graph at the appropriate point in the simu-
lation. All containers in the set S then have their preferred path recomputed.

As the simulation algorithm is stated, it returns a function f : A ×
P → R denoting the number of passengers from each group traveling by
each arc. However, it is necessary for the feedback mechanism described in
Section 6 to have the path decomposition of the flows rather than the flows
represented by f . One can derive a greedy path decomposition from f in
time O(|P| · |V | · |A|), but we need the path decomposition that represents
the actual paths traveled by passengers. We can create it on the fly by
storing the path history with each container in the algorithm instead.

We remark for the computational complexity of the simulation algo-
rithm, that up to two containers are added to S whenever one container is
removed. This implies that in the worst case each passenger group is split
a number of times that is exponential in the number of trips. It is trivial to
construct instances that demonstrate asymptotic worst case behavior, but as
we observe later, the computational behavior of the simulation on realistic
instances is not a bottle-neck in the process.

We note that we could potentially obtain a speedup of the algorithm by
merging containers that represent the same passenger group if they meet
at a common node. This would even prevent the worst case exponential
complexity. However, we would then loose the history of paths traveled
thus far in the simulation and we would loose information on the traveling
patterns of groups that were split.

6 Feedback

The purpose of the feedback mechanism is to interpret the passenger flow
returned by the simulation algorithm, and provide an optimization direction
that is likely to improve the solution in the next iteration. This is performed
by estimating the effect of the train capacities on the total passenger incon-
venience.
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More formally, the feedback mechanism is a function F : T × Z+ → R

that maps the trips T in the timetable and the non-negative integers to
values in R. For trip t ∈ T and c ∈ Z+ the value F (t, c) denotes the penalty
to the potential decision of assigning rolling stock with capacity c to trip t.

Consider a passenger flow f : A × P → R returned by the simulation
algorithm in Section 5. Then consider a trip t ∈ T and let a ∈ A be the trip
arc representing trip t. We achieve this by considering how many passengers
wanted to travel with t in the simulation and estimating the delay of any
passengers who were unable to board the train at its departure.

From the simulation algorithm we know which passenger groups at-
tempted to travel with arc a. Let p1, . . . , pk be those groups. Let ui =
f(a, pi) be the number of passengers from group pi that traveled with arc
a and let ri be the number of passengers from group pi that attempted to
board arc a but were rejected.

Consider a passenger group pi. The passengers of this group follow
paths from the origin node opi according to the path decomposition from the
simulation algorithm. Suppose si paths contain the arc a, and ti paths result
from the rejection at the boarding procedure at arc a. Then let Q1, . . . , Qsi

be the paths that contain the arc a and let W1, . . . ,Wti be the paths that
result from the rejection at a. For a path P let n(P ) be the number of
passengers that traveled along P and let v(P ) be the inconvenience per
passenger traveling along P for the group pi. Then the term

TRAVEL(pi, a) =

∑si
j=1 (n(Qj) · v(Qj))
∑si

j=1 n(Qj)

denotes the average inconvenience per passenger from group pi traveling on
a. Similarly, the term

REJECT(pi, a) =

∑ti
j=1 (n(Wj) · v(Wj))

∑ti
j=1 n(Wj)

denotes the average inconvenience per passenger from group pi rejected upon
boarding a. Using the terms TRAVEL(pi, a) and REJECT(pi, a) we estimate the
contribution per passenger to the total inconvenience by

AVG COST(a) =

∑k
i=1 ri · (REJECT(pi, a)− TRAVEL(pi, a))

∑k
i=1 ri

where AVG COST(a) is the marginal contribution to the cost of the passenger
flow by decreasing the capacity of arc a by a small value ε. We set the
function in the feedback mechanism to the following value

F (t, c) = max

{

0 ,

k
∑

i=1

(ui + ri)− c

}

· AVG COST(a)
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Figure 3: Left : The passenger flow on arcs for passenger group
pi. Right : The path decomposition.

which denotes the expected cost of assigning capacity c to trip t (where a
is the trip arc corresponding to t). Note that if the capacity is sufficient to
hold all passengers (i.e. c ≥

∑k
i=1 (ui + ri)) then it incurs no cost to assign

the capacity.

Example

Consider the example passenger flow of a group p in the left diagram of
Figure 3. The group consists of 100 passengers traveling from origin O to
destination D, starting at 9:00, and has deadline 13:15. Upon boarding arc
a = (A, 10:10)(B, 10:30) the passenger group is split where 70 passengers
are able to board and the remaining 30 passengers are rejected. The group
is further split at some other arcs resulting in the paths shown in the right
diagram in Figure 3. Paths Q1 and Q2 follow from the boarding of a whereas
paths W1 and W2 follow from the rejection at a.

Assume the passengers in group p had expected arrival time 11:45. Then
we derive the following path sizes and values from the figure: n(P1) = 50,
v(P1) = 0, n(P2) = 20, v(P2) = 60, n(W1) = 10, v(W1) = 60, n(W2) =
20 and v(W2) = 90. The average contribution per passenger to the total
inconvenience for passengers from group p respectively traveling with or
rejected at a is calculated as follows.

TRAVEL(p, a) =

∑2
j=1 (n(Qj) · v(Qj))
∑2

j=1 n(Qj)
=

50 · 0 + 20 · 60

70
= 17.1

REJECT(p, a) =

∑2
j=1 (n(Wj) · v(Wj))

∑2
j=1 n(Wj)

=
10 · 60 + 20 · 90

30
= 80

The estimated contribution to the quality of the passenger flow per pas-
senger rejected at arc a is thus 62.9.
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Observations and remarks

We note that the feedback mechanism may encourage the insertion of more
capacity on an arc a resulting in more passengers traveling on that arc.
However, these passengers may turn out to be delayed by the lack of capacity
on other arcs instead. It may thus take several iterations before reaching
an assignment of rolling stock that avoids some of the delays. Consider for
example the passenger graph in Figure 4 with m stations S1, . . . , Sm. Two
trip arcs ai and bi connect station Si and Si+1 where bi is later than ai.
Suppose a passenger group has origin S1 and destination Sm and has some
passengers rejected upon boarding at arc a1. Those passengers will then
travel with trip arcs b1, . . . , bm−1.

The feedback mechanism will then penalize capacity shortage on arc
a1. Assigning more capacity to a1 will then cause the passengers to be
rejected at arc a2 instead, leading to the same amount of delay. The feedback
mechanism will then additionally penalize capacity shortage on arc a2 in the
next iteration and so on. In this example it will take m−1 iterations before
the delay is avoided.

We also note that the feedback mechanism described in this section is a
natural candidate for providing a new optimization direction based on the
current solution. But there exist many other schemes for this task that could
make sense.

7 Optimization

For rescheduling the rolling stock we use the Composition Model described
in Chapter 3 of Nielsen (2011). Recall that the model contains variables
Xt,p ∈ {0, 1} that denote whether composition p ∈ η(t) is used for trip
t ∈ T where η(t) is the set of allowed compositions for t. The capacity of
the rolling stock in composition p is cap(p).
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The objective of the model consists of two parts; the system related
costs and the service related costs. At first we could define the service
related costs in the ith iteration by the function gi(X) using the feedback
mechanism F : T × Z+ → R.

gi(X) =
∑

t∈T

∑

p∈η(t)

F (t, cap(p)) ·Xt,p

Then the objective function hi(X,Z, I) in the ith iteration can be defined
as follows.

hi(X,Z, I) = c(X,Z, I) + gi(X)

where c(X,Z, I) are the system related costs and we assume that the feed-
back is initially g0(X) = 0.

However, we experienced that this approach could lead to cyclical behav-
ior as the feedback from earlier iterations is ignored. We therefore modify
the part of the objective derived from the feedback to

gi(X) = (1− α)gi−1(X) + α
∑

t∈T

∑

p∈η(t)

F (t, cap(p)) ·Xt,p

where 0 ≤ α ≤ 1 is a parameter that weights the latest feedback against
feedback from earlier iterations. This way the feedback from a certain iter-
ation gradually becomes less relevant. Note that α = 1 describes the special
case where feedback from earlier iterations is ignored. The similar introduc-
tion of such an α parameter in the approach by Dumas and Soumis (2008)
was shown to be crucial for the performance of their solution procedure.

We mention that neither the solution nor the gi function necessarily
converges with the applied feedback mechanism and the definition of α.

8 Lower bounds

To assess the quality of our solutions we investigate methods for constructing
lower bounds on the solution value. This allows us to analyze how much
of the delays is caused by the changes in the disrupted timetable and how
much is caused by the shortage of capacity.

In this section we describe two methods based on relaxing some of the
assumptions on the problem. The first approach is rather simple, we relax
the constraints that cause the passengers to interact – namely the limitation
on capacity of rolling stock. In the second approach we relax some assump-
tions on the passengers’ traveling strategies; we assume that capacity is not
utilized by passengers in a greedy manner, but is rather allocated by the
operator such that total inconvenience in the system is minimized.
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8.1 Lower bound based on unlimited capacity

An intuitive way to relax the underlying assumptions of the system on pas-
senger interaction is to assume that all trains have unlimited capacity. This
way no passenger is ever rejected in the boarding procedure and every pas-
senger can follow the best path in the passenger graph according to their
traveling strategy. This implies that all delays experienced by passengers
are caused by changes to the timetable such as canceled trips rather than
by limited capacity.

This relaxation corresponds to the situation where unlimited amounts
of rolling stock are available, an arbitrary amount of rolling stock may be
assigned to each train, and there are no limitations on shunting possibilities
at any station. It results in a lower bound on the service related cost i.e.
the total amount of delay experienced by passengers in the system. We call
this lower bound the infinite capacity lower bound (IC-LB).

Calculating the infinite capacity lower bound simply amounts to simu-
lating the passenger groups P in a passenger graph G = (V,A) where all
arcs a ∈ A have capacity cap(a) = ∞.

8.2 Lower bound based on centralized passenger flow

As described earlier, the passenger flow constitutes a multi commodity flow
in the passenger graph. The quality of the flow is measured by the total
inconvenience experienced by the passengers, i.e. the amount of delay and
the number of passengers who do not reach their destination before their
deadline. Since the passengers themselves choose their routes in the net-
work the total flow may be suboptimal with respect to this quality measure.
Suppose we relax the assumptions on the route choice to let the operator
decide which passengers travel with which trains.

For passenger group p ∈ P we denote by πp the set of paths the pas-
sengers in the group can travel with. The paths originate from the node
(op, τp) in the passenger graph G = (V,A) and can lead to any station in
the network – not only to the destination station. This includes an empty
path that represents staying at the origin station.

Define for each passenger group p ∈ P and possible traveling path q ∈ πp
a variable Yp,q ∈ R+. The variable states the number of passengers from
group p that travel with path q. Let cp,q denote the inconvenience by one
passenger from group p traveling with path q. Then the passenger flow with
operator control may be expressed as the following linear program.

min
∑

p∈P

∑

q∈πp:
a∈q

cp,qYp,q (1)
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subject to

∑

q∈πp

Yp,q = np ∀p ∈ P (2)

∑

p∈P

∑

q∈πp:
a∈q

Yp,q ≤ cap(a) ∀a ∈ A (3)

Yp,q ∈ R+ ∀p ∈ P, q ∈ πp (4)

The objective function (1) consists of the sum over the paths of the num-
ber of passengers traveling with a possible path times the contribution per
passenger of the path to the quality of the flow.

Constraints (2) state that all passengers in a group must travel by one
of the possible paths. The capacity constraints (3) denote that the number
of passengers traveling on an arc is limited by the arc capacity. Finally
constraints (4) state the domains of the variables.

The program (1) – (4) models the operator controlled passenger flow
problem as a continuous minimum cost multi commodity flow problem.
However, the model assumes that capacities on arcs are given as input (right
hand side of constraints (3)). The arc capacities are decided through the
rolling stock rescheduling process and are themselves subject to constraints
on rolling stock availability and shunting possibilities. In order to incorpo-
rate the aspect of rolling stock rescheduling, we extend the model to (5) – (9)
below. Here, the variables Xt,p ∈ {0, 1} model the assignment of composi-
tion p to trip t as in the Composition Model in Chapter 3 of Nielsen (2011).

min
∑

p∈P

∑

q∈πp:
a∈q

cp,qYp,q (5)

subject to

∑

q∈πp

Yp,q = np ∀p ∈ P (6)

∑

p∈P

∑

q∈πp:
a∈q

Yp,q ≤
∑

p∈η(t)

cap(p) Xt,p ∀a ∈ A, t is trip of a (7)

X ∈ X (8)

Yp,q ∈ R+ ∀p ∈ P, q ∈ πp (9)

In constraints (7) the right hand side describes that the capacity of an arc is
determined by the rolling stock composition assigned to the trip represented
by the arc. The constraint (8) states that the vector X of composition
variables must belong to the set X of feasible assignments of rolling stock
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to trips. In the railway system considered in this paper, it is equivalent to
saying that it must be a feasible solution to the Composition Model. We call
this the strong operator controlled lower bound (SOC-LB). However, we did
not solve this model. But in the discussion of future research in Section 10
we propose a method for solving SOC-LB using a cut-and-branch approach.

A somewhat weaker lower bound that does not require solving the com-
plex model (5) – (9) can be constructed by relaxing constraints (8). Rather
than requiring that all variables Xt,p correspond to a feasible solution to
the rolling stock rescheduling problem, we require for each trip t ∈ T to be
assigned a composition p ∈ η(t) with the largest possible capacity that is
feasible in some solution X ∈ X .

This enables us to decide the capacity in a preprocessing step and fix the
variables Xt,p. With the capacities fixed the model is equivalent to the multi
commodity flow model (1) – (4). We call this the weak operator controlled

lower bound (WOC-LB).
We solve WOC-LB in two steps. In the first step, the Composition Model

is solved once for each trip t ∈ T with the simple objective

capmax(t) = max
∑

p∈η(t)

cap(p)Xt,p

thus computing the maximum possible capacity capmax(t) on each trip t
in any feasible assignment of the rolling stock. In the second step, we
solve the model (1) – (4) with the arc capacities in constraint (3) set to
cap(a) = capmax(t) where a is the corresponding trip arc of t in the passen-
ger graph. The multi commodity flow problem is solved using a text-book
column generation procedure (see Ahuja et al. (1993)).

9 Computational tests

In this section we perform computational tests based on our approach. In
Section 9.1 we describe how we generate test instances with different char-
acteristics, and in Section 9.2 we report and discuss the results.

9.1 Instances

For testing our approach we constructed a number of instances from real-
istic data based on the Intercity network of NS. The instances involve the
heavily utilized core part of the network connecting the 14 stations shown
in Figure 5. This part of the network is serviced by the 16 Intercity lines
listed in the figure. The lines call at the given stations and operate with the
specified frequencies. On most routes there are at least four trains per hour
between neighboring stations.

We note that some of the involved lines in reality continue beyond the
terminal stations shown in Figure 5 i.e. to the south-west of Dordrecht (Ddr),
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Line Stations Frequency
500 Gv Gd Ut Amf Zl hourly
700 Shl Amf Zl hourly
800 Amr Zd Asd Ut Ht half hourly
1500 Asd Amf Dv half hourly
1600 Shl Amf Dv hourly
1700 Gv Gd Ut Amf Dv hourly
1900 Gv Rtd Ddr half hourly
2000 Gv Gd Ut Ah half hourly
2100 Asd Shl Ledn Gv Rtd Ddr half hourly
2600 Asd Shl Ledn Gv half hourly
2800 Rtd Gd Ut Amf half hourly
3000 Amr Asd Ut Ah half hourly
3500 Shl Ut Ht half hourly
8800 Ledn Ut half hourly
20500 Rtd Gd Ut hourly
21700 Rtd Gd Ut hourly

Figure 5: The network considered in the test instances.

north of Alkmaar (Amr) and Zwolle (Zl), east of Deventer (Dv), south-
east of ’s-Hertogenbosch (Ht), and south of Arnhem (Ah). However, we
perform a spatial aggregation of the network in the instances by assuming
that passengers do not travel further than those six terminal stations. This is
not a restriction in the verification of the approach as there are no rerouting
possibilities in the peripheral parts of the network anyway.

The timetable is from a weekday and contains 2324 trips. All trips
are assumed to be served with rolling stock of the type VIRM which is
available in two variants with 4 and 6 carriages, respectively. The two
variants have technical maximum capacities of 572 and 847 passengers per
unit respectively. The maximum train length is assumed to be 14 carriages
on all trips and it is possible for all lines to perform shunting operations at
the terminal stations except Utrecht (Ut).

We created the passenger groups for the instances by matching passenger
counts on each trip with OD data which resulted in 11415 passenger groups
for the full day instance. To construct the deadlines of the passenger groups
we assume that passengers are willing to accept at most an increase in
traveling time of 50% plus 90 minutes.

Figure 6 shows the number of people in the system during the day in
the instances. We observe that the peak hours around 8:00 and 17:00 are
the busiest and therefore the most likely periods to experience capacity
problems.

The disruptions considered in the computational tests all concern situ-
ations where a certain part of the network is unavailable for several hours.
The timetable is updated according to current practice by canceling affected
trips and turning trains on either side of the disruption.

The instances are described in Table 1. Each instance is named by a
string like “D2T1O1R2P1” characterizing the instance. The name consists
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Assigned Reserve Passenger
Instance Disruption Time units units Passengers groups

D1T1O1R1P1 Rtd-Gvx 16:00 - 19:00 114, 44 0 422022 11415
D1T1O1R2P1 Rtd-Gvx 16:00 - 19:00 114, 44 1, 2 422022 11415
D1T1O1R3P1 Rtd-Gvx 16:00 - 19:00 114, 44 4, 2 422022 11415
D1T1O2R1P1 Rtd-Gvx 16:00 - 19:00 106, 41 0 422022 11415
D1T1O1R2P2 Rtd-Gvx 16:00 - 19:00 114, 44 1, 2 485375 11415
D1T2O1R1P1 Rtd-Gvx 11:00 - 15:00 114, 44 0 422022 11415

D2T1O1R1P1 Gd-Ut 16:00 - 19:00 114, 44 0 422022 11415
D2T1O1R2P1 Gd-Ut 16:00 - 19:00 114, 44 1, 2 422022 11415
D2T1O1R3P1 Gd-Ut 16:00 - 19:00 114, 44 4, 2 422022 11415
D2T1O2R1P1 Gd-Ut 16:00 - 19:00 106, 41 0 422022 11415
D2T1O1R2P2 Gd-Ut 16:00 - 19:00 114, 44 1, 2 485375 11415
D2T2O1R1P1 Gd-Ut 11:00 - 15:00 114, 44 0 422022 11415

D3T1O1R1P1 Ut-Amf 16:00 - 19:00 114, 44 0 422022 11415
D3T1O1R2P1 Ut-Amf 16:00 - 19:00 114, 44 1, 2 422022 11415
D3T1O1R3P1 Ut-Amf 16:00 - 19:00 114, 44 4, 2 422022 11415
D3T1O2R1P1 Ut-Amf 16:00 - 19:00 106, 41 0 422022 11415
D3T1O1R2P2 Ut-Amf 16:00 - 19:00 114, 44 1, 2 485375 11415
D3T2O1R1P1 Ut-Amf 11:00 - 15:00 114, 44 0 422022 11415

D4T1O1R1P1 Gvx-Ledn 16:00 - 19:00 114, 44 0 422022 11415
D4T1O1R2P1 Gvx-Ledn 16:00 - 19:00 114, 44 1, 2 422022 11415
D4T1O1R3P1 Gvx-Ledn 16:00 - 19:00 114, 44 4, 2 422022 11415
D4T1O2R1P1 Gvx-Ledn 16:00 - 19:00 106, 41 0 422022 11415
D4T1O1R2P2 Gvx-Ledn 16:00 - 19:00 114, 44 1, 2 485375 11415
D4T2O1R1P1 Gvx-Ledn 11:00 - 15:00 114, 44 0 422022 11415

D5T1O1R1P1 Asd-Ut 16:00 - 19:00 114, 44 0 422022 11415
D5T1O1R2P1 Asd-Ut 16:00 - 19:00 114, 44 1, 2 422022 11415
D5T1O1R3P1 Asd-Ut 16:00 - 19:00 114, 44 4, 2 422022 11415
D5T1O2R1P1 Asd-Ut 16:00 - 19:00 106, 41 0 422022 11415
D5T1O1R2P2 Asd-Ut 16:00 - 19:00 114, 44 1, 2 485375 11415
D5T2O1R1P1 Asd-Ut 11:00 - 15:00 114, 44 0 422022 11415

Table 1: Instances for computational results.
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Figure 6: Number of passengers in the system during the day in
the undisrupted situation.

of five parts where the first part “Di” describes the place of the disruption;
“D1” is between Rotterdam (Rtd) and The Hague (Gv), “D2” is between
Gouda (Gd) and Utrecht (Ut), “D3” is between Utrecht (Ut) and Amersfoort
(Amf), “D4” is between The Hague (Gv) and Leiden (Ledn), and “D5” is
between Amsterdam (Asd) and Utrecht (Ut).

The second part “Ti” describes the time of the disruption; for instances
with “T1” the blockage lasts from 16:00 to 19:00, and for instances with
“T2” the blockage lasts from 11:00 to 15:00.

The third part “Oi” describes the original rolling stock schedules used for
the undisrupted situation. Instances with “O1” are based on a circulation
with 114 rolling stock units of the variant with 4 carriages and 44 rolling
stock units of the variant with 6 carriages. The circulation is planned such
that enough capacity is assigned to all trips to accommodate all passengers
in the undisrupted situation, furthermore every train has significant slack
capacity compared to the “full” capacity. Instances with “O2” use only 106
and 41 units of the two types respectively.

The fourth part “Ri” refers to the number of available reserve units.
Instances with “R1” do not have reserve units. Instances with “R2” have
three reserve units allocated in the network as one unit with 4 carriages at
Amsterdam (Asd), one unit with 6 carriages at each of the stations of The
Hague (Gv) and Rotterdam (Rtd). Instances with “R3” have six reserve
rolling stock units distributed as two units with 4 carriages in Amsterdam
(Asd), one unit with 4 carriages in Amersfoort (Amf), one unit with 6
carriages in The Hague (Gv), and one of each type of unit in Rotterdam
(Rtd).

The fifth part “Pi” specifies the number of passengers in the system.
Instances with “P1” have 422022 passengers distributed over the day as
shown in Figure 6. Instances with “P2” have 15% more passengers in all
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passenger groups (total 485375 passengers) relatively distributed in the same
way as in the “P1” instances.

Objectives

The objective in the instances consists of the system related goals and the
service objectives. As described earlier the service related objectives are
measured by the total inconvenience experienced by the passengers. More
specifically, we minimize the sum of the delay minutes and the penalty for
passengers who leave the system.

For the system related objectives we minimize with highest priority the
number of canceled trips and with secondary priority the number of changes
to the shunting process and the number of off-balances (see Section 2.6 of
Nielsen (2011)). More specifically we use a cost of 500 for introducing a new
shunting operation or changing the type of operation performed. Shunting
a different number of units or canceling a shunting operation is penalized
by 100, while off-balances cost 400. Finally, we use a penalty of 0.0001 for
carriage kilometers to ensure that for two solutions with the same value for
all other objective terms, the one with lower operating cost is used. Note
that all other objective parameters outweigh the total contribution from
carriage kilometers.

We note that for a concrete application of the approach it is up to the
decision maker to decide on the trade-off between service and system ob-
jectives. However, we limit this study to a trade-off that favors the service
oriented part of the rolling stock rescheduling process and therefore we apply
relatively low costs on changes to the system.

9.2 Results

We first investigate the performance of the approach for different values of
the parameter α on a subset of the instances. Recall from Section 7 that α
is a parameter that weighs the feedback from the current iteration against
feedback from earlier iterations. We then run our approach on the remaining
instances with a fixed value of α and discuss the results.

Parameter α

To analyze the effect of α we use the subset of instances named “DiT1O1R2P1”
where i = 1, . . . , 5. In Table 2 we report the performance of the approach
on the instances for distinct values of α in the interval 0 ≤ α ≤ 1.

In each run we performed 30 iterations. The table shows the service and
system cost of the best solution found as well as in which iteration the best
solution was found. Finally the table shows in the last column how many
unique solutions were found in the 30 iterations.
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Instance α Service System Iteration Unique solutions

D1T1O1R2P1 0.20 514983 3949 22 27
0.35 514983 3949 20 30
0.50 514869 4649 24 29
0.65 518450 2749 24 30
0.80 517241 4550 17 23
1.00 536076 4449 3 5

D2T1O1R2P1 0.20 1241867 16252 14 30
0.35 1244684 14551 16 30
0.50 1245766 13851 22 30
0.65 1244286 14451 25 30
0.80 1244286 14651 15 30
1.00 1250848 14951 3 7

D3T1O1R2P1 0.20 429898 3350 16 17
0.35 429898 3350 9 19
0.50 429898 3350 6 20
0.65 429898 3350 5 20
0.80 429898 3350 8 17
1.00 429898 4150 1 3

D4T1O1R2P1 0.20 689086 7951 21 28
0.35 689086 7851 17 29
0.50 689086 7851 25 30
0.65 689086 9952 2 29
0.80 692419 8051 17 23
1.00 717539 7652 7 8

D5T1O1R2P1 0.20 607200 9851 18 30
0.35 607117 9151 13 30
0.50 606274 11451 6 30
0.65 611579 10351 21 30
0.80 619260 8651 9 30
1.00 644427 11051 21 30

Table 2: Results for instances “DiT1O1R2P1” with i = 1, . . . , 5
for different values of α. Each row contains for a certain in-
stance and α value the service and system objective of the best
solution found and the iteration in which it was found. The last
column shows the number of unique solutions found in the entire
procedure.
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For the instance “D1T1O1R2P1” we plotted the traversal of the algo-
rithm in the two-dimensional objective space in separate diagrams for each
α value in Figure 7. Similarly Figure 8 contains diagrams for the tests on
instance “D5T1O1R2P1”.

We observe that the tests with an α value of 1.00 are consistently worse
than all other values for all instances. This is not surprising since only the
feedback from the last iteration is taken into account in each step, and we
therefore do not use the information obtained in the earlier iterations. In
fact, on “D1”-“D4” we observe cyclical behavior of the algorithm. After
a few iterations the algorithm alternates between the same two iterations.
This behavior can be observed in Figure 7.

For the other values of α we observe that with the parameter α = 0.20 the
algorithm often takes longer to reach the best solution in the procedure. In
Figure 8 it is particularly observable that the procedure takes smaller steps
in the objective space with this α value. Setting the parameter to α = 0.80
also seems inferior to the remaining values. For the tests with α = 0.35,
0.50, and 0.65 we observe only limited difference in the performance of the
algorithm. We therefore use the parameter value α = 0.35 for the remaining
computational tests.

All instances

We tested the approach on all instances using the fixed parameter value
α = 0.35. The results are shown in Table 3. The first column contains the
instance names, and the next three columns show the minimum, average and
maximum experienced running times for the optimization module over the
30 iterations of the algorithm. The next column shows the average running
time for the simulation module of the algorithm. The columns named “Ser-
vice” and “System” under “Best for system” denote the service and system
objectives of the solutions that minimizes the system related objective. The
columns named “Service” and “System” under “Best solution” denote the
service and system objectives of solutions that minimize the sum of service
and system objectives. Columns “IC-LB” and “WOC-LB” indicate the two
types of lower bounds on the service objective.

For all instances with disruptions “D1”, “D3” and “D4” we found so-
lutions without canceled trips. However, for all instances with disruptions
“D2” and “D5” it was necessary to cancel one trip. The solutions that only
concern the system objective (in columns “Best for system”) all have low
system costs and relatively high service costs.

We can make a number of observations concerning the results. First, we
observe that the approach is able to improve the service quality significantly
in all instances at the cost of a number of changes to the system. The
improvements are between 4% and 47%. For disruptions “D1” and “D3”
we generally add 3 – 6 shunting operations and cancel or change 15 – 30
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Figure 7: Traversal of the objective space for different settings
of parameter α for instance “D1T1O1R2P1”. The first iteration
is marked by a solid dot.
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Figure 8: Traversal of the objective space for different settings
of parameter α for instance “D5T1O1R2P1”. The first iteration
is marked by a solid dot. Note that the scale of the y-axis differs
for α = 1.00.
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OPT time SIM Best for system Best solution
Instance min avg max time Service System Service System IC-LB WOC-LB

D1T1O1R1P1 5.6 9.3 12.2 2.8 628211 1449 600017 4649 421007 544674
D1T1O1R2P1 5.6 8.6 14.6 2.6 578550 1249 514983 3949 421007 430681
D1T1O1R3P1 4.5 8.4 21.1 2.6 579315 1249 474465 4449 421007 424816
D1T1O2R1P1 4.4 7.6 12.2 2.8 660150 2049 622684 4750 421007 556666
D1T1O1R2P2 3.7 7.0 14.7 2.8 818667 1249 736754 6450 484126 532481
D1T2O1R1P1 10.2 17.8 41.9 2.8 303037 1149 287612 3049 287612 287612

D2T1O1R1P1 5.7 10.4 13.6 3.1 1818607 4248 1249484 15351 996484 1039719
D2T1O1R2P1 5.7 10.3 14.5 3.1 1818607 4248 1244684 14551 996484 1039719
D2T1O1R3P1 4.9 8.0 17.7 3.1 1818607 4248 1240150 12951 996484 1039719
D2T1O2R1P1 7.1 11.0 16.6 3.1 1805419 3849 1298913 16751 996484 1068677
D2T1O1R2P2 4.8 10.8 14.6 3.3 2567406 4248 1618741 17952 1145355 1263904
D2T2O1R1P1 22.4 203.3 4701.2 3.1 1115628 3248 743964 10051 721884 727088

D3T1O1R1P1 4.6 8.6 21.5 2.7 505971 2349 429898 3750 416595 426838
D3T1O1R2P1 4.5 7.4 21.1 2.6 505971 2049 429898 3350 416595 426838
D3T1O1R3P1 4.6 7.8 27.8 2.7 505971 2049 429898 3350 416595 426838
D3T1O2R1P1 4.7 10.0 21.7 2.6 505971 3049 429898 5750 416595 426838
D3T1O1R2P2 4.5 10.1 21.6 2.7 765566 2049 515438 6651 479347 500599
D3T2O1R1P1 15.9 32.8 70.3 3.0 625948 949 454710 4450 444589 450480

D4T1O1R1P1 3.2 5.3 12.9 2.6 839882 1349 698616 7451 666626 674203
D4T1O1R2P1 3.3 5.1 14.0 2.4 839882 1349 689086 7851 666626 670784
D4T1O1R3P1 3.7 5.4 12.8 2.6 839882 1349 686646 8551 666626 670784
D4T1O2R1P1 2.9 4.7 12.3 2.6 842661 1249 704199 8751 666626 675355
D4T1O1R2P2 3.4 7.5 14.0 2.7 1191093 1349 846999 10952 766343 785204
D4T2O1R1P1 6.8 12.7 21.1 2.8 494192 1048 460461 5650 459536 459572

D5T1O1R1P1 14.3 85.8 404.0 2.8 1116346 1449 610295 9551 520867 536397
D5T1O1R2P1 20.5 192.7 544.6 2.6 1116650 1449 607117 9151 520867 536397
D5T1O1R3P1 22.9 268.3 954.3 2.7 1116650 1449 596495 10151 520867 536397
D5T1O2R1P1 15.5 57.8 788.4 2.8 1122055 1449 665010 14251 520867 536397
D5T1O1R2P2 13.6 79.6 1612.8 3.0 1722815 1449 915054 18453 599038 635239
D5T2O1R1P1 6.6 148.8 3082.6 2.9 765585 549 417038 7451 388216 388216
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others. The solutions have 1 or 2 off-balances. For disruptions “D2”, “D4”
and “D5” we generally experience more changes to the system; 10 – 17 new
shunting operations are added while 20 – 35 are changed or canceled. The
solutions for these disruptions have up to 7 off-balances. These changes are
relatively few from a practical point of view considering the fact that the
system contains 14 stations.

Second, we notice that we are generally able to alleviate more passenger
inconvenience in the instances with more available reserve units. This con-
cerns instances “R1” with no reserve units, “R2” with three reserve units,
and “R3” with six reserve units. The results for these instances are the first,
second and third rows respectively in each block in Table 3. Especially for
disruption “D1” (between The Hague (Gv) and Rotterdam (Rtd)) the extra
reserve units seem to be highly beneficial for the service objective. This
indicates that the reserve units at those stations can be allocated where the
capacity is needed.

Third, we notice that there is a significant difference between disruptions
in the peak hours and in the off-peak hours. This is apparent when com-
paring the disruptions at time 16:00-19:00 (named “T1”) to the disruptions
at time 11:00-15:00 (named “T2”) – first and sixth row in each block in
Table 3 respectively. Generally, less delay minutes occur in a four hour off-
peak disruption compared to a three hour disruption during the peak. Also,
it is possible for all disruptions “D1”,. . .,“D5” to bring the service objective
close to the IC-LB in the off-peak instances. This indicates that capacity is
not a bottleneck in those situations.

Fourth, we observe that the instances with less slack capacity in the
original plan generally lead to rescheduled solutions with worse service ob-
jectives. This concerns “O2” (fourth row in each block in the table) which
is planned using much less rolling stock than “O1” (first row), and “P2”
(fifth row) which has 15% more passengers than “P1” (second row) but uses
the same amount of rolling stock. The results imply that less slack capacity
potentially leads to more inconvenience during disruptions.

Fifth, for disruptions “D3” and “D4” we see that the service objective
of the best solutions found is quite close to the lower bound given by IC-
LB. This means that most of the experienced inconvenience is due to the
changed timetable rather than due to lack of capacity. For all other in-
stances we experience that the changes to the timetable are still by far the
major contributor to passenger delays, but lack of capacity often contributes
around 10%-30% of the delays.

Sixth, in the lower bounds given by WOC-LB, the passenger traveling
paths are decided so that the sum of the delays is minimized. In contrast
to the IC-LB the arcs have limited capacity and the WOC-LB thus explains
some of the delays by the lack of capacity. For several instances this lower
bound closes a significant part of the gap between the service objective of
the best found solution and the lower bound on the service objective.
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Figure 9: Number of additional passengers in the system dur-
ing and after the disruption for instances “D1T1O1R1P1”, . . .,
“D5T1O1R1P1”. The area under a curve is the cumulative de-
lay.

In a separate set of computational tests we solved the instances with
greatly different weights on the system objectives, i.e. divided or multiplied
by a factor ten. But the best solutions found seemed to be comparable to
the solutions reported for the current weights. This is probably due to the
system costs being relatively small compared to the service costs.

The numbers of passengers that are delayed at a given time are shown
in the diagrams of Figure 9. More specifically, the numbers of passengers in
the system in addition to the passengers in the corresponding undisrupted
situation are shown. The diagrams concern the solutions to the first instance
in each block in Table 3. The number of passengers in the system is always
at least as large as the number of passengers in the system in the undisrupted
situation. This is because people depart at the same time and they arrive
no earlier than they are able to in the undisrupted situation. Each diagram
contains the IC lower bound which shows how many passengers are delayed
because of the changed timetable. Furthermore, each diagram contains the
curve for the best found solution (dark gray) and the solution that is best
for the system (light gray). We notice that for the complicated disruptions
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“D2” and “D5” there is a significant gap between the best found solution
and the solution that is best for the system. For disruptions “D3” and “D4”
the best solution is almost identical to the lower bound. Finally, we observe
that for disruption “D1” the best solution contains more delayed passengers
that the best system solution at some time instants. However, after the
disruption the best solution brings the delayed passengers out of the system
faster than the best system solution.

Computation times

The computation times of the optimization module and the simulation mod-
ule for each instance are shown in Table 3. For the optimization module the
minimum, the average, and the maximum computation time over all itera-
tions is shown in seconds. For the simulation time only the average time is
shown since the computation time for that module is very consistent. Run-
ning times for the feedback mechanism are not shown as they are neglectable
in comparison with the computation time of the other modules.

The tests were performed on an Intel Core 2 duo 3.33 GHz desktop
computer with 3 GB of RAM. For the optimization we used CPLEX 11.0
on a single processor while the code for the simulation and the feedback
mechanism was written in Java.

The computation time of the optimization module seems to be instance
dependent. For all instances involving the disruptions “D1”, “D3” and “D4”
we experienced computation times of up to 70 seconds for an iteration, and
on average the optimization performed each iteration in around 5 – 10 sec-
onds. Instances involving the early disruption “T2” take longer, as a larger
part of the day is rescheduled. The instances involving disruption “D2” need
longer computation times, especially for the instance “D2T2O1R1P1” the
computation time is on average around three minutes per iteration.

The instances involving disruption “D5” generally require longer com-
putation times for the optimization. In fact, the iterations for instance
“D5T1O1R3P1” all took at least 22 seconds and on average more than 4
minutes. We attempted to reduce the running time by altering some of the
basic CPLEX parameters and adding some valid cuts. This worked on some
instances but increased the running time on others. We were thus unable
to find settings that consistently improved running times compared to the
default settings. However, tuning CPLEX for this set of instances is out of
the scope of this study. We did, nevertheless, try another MIP solver for
the optimization module. We used Gurobi 3.0.0 which was faster on espe-
cially the “D5” instances but was somewhat slower on a number of other
instances. A comparison between the running times of the two tested MIP
solvers would be unfair since Gurobi 3.0.0 utilizes both cores in the processor
and is also a much newer release.
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10 Conclusions and future research

In this paper we described a heuristic approach for improving the service
aspect of the rolling stock schedule during disruptions. The improvements in
service quality comes at the cost of changes to the system. For all instances
in the computational tests we were able to improve the service objective and
in some cases even reach the lower bound.

In our approach we apply a number of assumptions on the behavior and
interaction of passengers. Passengers are assumed to want to arrive at their
destinations as quickly as possible and are assumed to leave the system
if their delays exceed certain thresholds. Also, passengers are assumed to
compete for the scarce capacity in the sense that capacity is assigned to
groups of passengers based on their size. We claim that these assumptions
reasonably reflect the real situation. But the approach is modular and can
be adapted to a system with significantly different assumptions on passenger
behavior by changing single components in the iterative approach.

The lower bounds provided in this paper are admittedly rather weak
for some instances. For future research we suggest investigating solution
approaches for the lower bound SOC-LB. It is appealing to develop a cut-
and-price approach for solving model (5) – (9). Such an approach would
combine column generation for the paths of passengers and row generation
based on Benders decomposition to add valid cuts for the assignment of
capacity.

The computation time on most instances is appealing for real-time use,
although the running time seems to depend on the structure of the solu-
tion. The approach provides a feasible solution in every iteration and may
therefore be terminated when a satisfactory solution is reached or when the
available computation time is up.

Another means to reducing computation time would be to utilize the
rolling horizon framework introduced in Chapter 4 of Nielsen (2011). This
integration would also allow us to account for the uncertainty of the system
although it requires a more realistic notion of informedness of passengers.
We have, however, chosen not to utilize the rolling horizon framework for
this study of rolling stock rescheduling with dynamic passengers since it
would obscure the contributions of the iterative framework.
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