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Entanglement monotone derived from Grover’s algorithm
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This paper demonstrates that how well a state performs as an input to Grover’s search algorithm depends
critically upon the entanglement present in that state; the more the entanglement, the less well the algorithm
performs. More precisely, suppose we take a pure state input, and prior to running the algorithm apply local
unitary operations to each qubit in order to maximize the probabilityPmax that the search algorithm succeeds.
We prove that, for pure states,Pmax is anentanglement monotone, in the sense thatPmax can never be decreased
by local operations and classical communication.
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I. INTRODUCTION

A celebrated result in quantum information science@1,2#
is the discovery of quantum algorithms able to solve pr
lems faster than any known classical algorithm. Three s
algorithms are Shor’s factoring algorithm@3,4#, Grover’s
search algorithm@5,6#, and algorithms for quantum simula
tion ~see, for example,@1#, and references therein!. However,
a satisfactorygeneraltheory of quantum algorithms is yet t
be developed. Such a theory must address the questio
what makes quantum computers powerful. No complete
swer to this question has been given, to date, but it is ge
ally believed thatquantum entanglementplays a key role.
The purpose of this paper is to connect the success of G
er’s search algorithm with the amount of entanglem
present in the state input to the algorithm.

In particular, we investigate what physical properties
the initial state of Grover’s algorithm limit the effectivene
of the algorithm. We show that there is a sense in whichthe
more entanglement is present in the initial state, the wo
Grover’s algorithm performs.To be more precise, suppos
we are given a stateuc& and the ability to do local unitary
operations onuc& to maximize the probabilityPmax(c) of a
successful run of Grover’s algorithm. The main result of t
paper is to prove that, up to small corrections,Pmax(c) is an
entanglement monotone@7#. That is, if uc& may be trans-
formed intouf& by local operations and classical commun
cation, then we prove thatPmax(c)<Pmax(f), again, up to
small corrections. We utilize this observation to construct
entanglement measure, theGroverian entanglementof a pure
statec, G(c). We prove that the Groverian entanglement
up to small corrections, an entanglement monotone, an
equivalent to an entanglement measure proposed previo
by Vedral, Plenio, Rippin, and Knight@8#. Thus, this work
provides anoperational interpretationfor a multiparty en-
tanglement measure, explicitly connecting that measure
the success probability of a quantum algorithm.

The paper is organized as follows. In Sec. II we descr
the quantum search algorithm and derive an exact expres
for the maximal success probability for a given initial reg
ter state. Motivated by this expression, in Sec. III we int
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duce the Groverian entanglement, analyze its properties,
show that it is an entanglement monotone. Section IV inv
tigates generalizations of our results to the case of nonq
systems, to mixed states, and specializes to the case of b
tite systems. Finally, Sec. V summarizes and discusses
results, and suggests directions for further research.

II. THE QUANTUM SEARCH ALGORITHM

In this section we review Grover’s quantum search alg
rithm, and derive an analytic expression for the probabi
that the algorithm succeeds when the initial input state is
arbitrary pure state ofn qubits.

Consider a search spaceD containing N elements. We
assume, for convenience, thatN52n, wheren is an integer.
In this way, we may represent the elements ofD using an
n-qubit registercontaining their indices,i 50, . . . ,N21. We
assume that a subset ofr elements in the search space a
marked, that is, they are solutions to the search problem.
distinction between the marked and unmarked elements
be expressed by a suitable function,f :D→$0,1%, such that
f 51 for the marked elements, andf 50 for the rest.

Suppose we wish to search the spaceD to find a marked
element. Phrased in terms of the functionf, the search for a
marked element becomes a search for an element such
f 51. To solve this problem on a classical computer o
needs to evaluatef for each element, one by one, until
marked state is found. Thus, on average,Q(N) evaluations
of f are required on a classical computer. It is one of the m
surprising results in quantum information science that, if
allow the functionf to be evaluatedcoherently, there exists a
sequence of unitary operations which can locate the mar
elements using onlyO(AN/r ) coherent queries off @5,6#.
This sequence of unitary operations is called Grover’s qu
tum search algorithm.

To describe the operation of the quantum search algori
we first introduce a register,ux&5ux1 . . . xn&, of n qubits, and
anancilla qubit, uq&, to be used in the computation. It will b
convenient to sometimes use the label ‘‘q’’ for the ancilla.
We also introduce aquantum oracle, a unitary operatorO
which functions as a black box with the ability torecognize
©2002 The American Physical Society12-1
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solutions to the search problem.~For more details on how an
oracle may be constructed, see Chap. 6 of@1#.! The oracle
performs the following unitary operation on computation
basis states of the register,ux&, and of the ancilla,uq&:

Oux&uq&5ux&uq% f ~x!&, ~1!

where% denotes addition modulo 2. This definition may
uniquely extended, via linearity, to all states of the regis
and ancilla.

The oracle recognizes marked states in the sense th
ux& is a marked element of the search space,f (x)51, the
oracle flips the ancilla qubit fromu0& to u1& and vice versa,
while for unmarked states the ancilla is unchanged. In Gr
er’s algorithm the ancilla qubit is initially set to the sta
(u0.2u1.)/A2. It is easy to verify that, with this choice
the action of the oracle is

Oux&S u0&2u1&

A2
D 5~21! f (x)ux&S u0&2u1&

A2
D . ~2!

Thus, the only effect of the oracle is to apply a phase
21 if x is a marked state, and no phase change ifx is un-
marked. Since the state of the ancilla does not change,
conventional to omit it, and write the action of the oracle
Oux&5(21) f (x)ux&. Grover’s search algorithm may be sum
marized as follows.

Algorithm 1. Grover’s quantum search algorithm.
Inputs. ~i! A black box oracleO, whose action is defined

by Eq. ~1!; ~ii ! n11 qubits in the stateu0& ^ nu0&q .
Outputs. A candidate for a marked state,us&.
Procedure.
~1! Initialization. Apply a Hadamard gate H

51/A2(1
1

21
1 ) to each qubit in the register, and the gateHX

to the ancilla, whereX5(1
0

0
1) is theNOT gate, and we write

matrices with respect to the computational basis (u0&,u1&).
The resulting state is

1

AN
(
x50

2n21

ux&S u0&2u1&

A2
D

q

. ~3!

~2! Grover iterations. Repeat the following operationm
times, wherem is an integer whose construction we descr
below.

~a! Apply the oracle, which has the effect of rotating th
marked states by a phase ofp rad. Since the ancilla is alway
in the state (u0&2u1&)/A2 the effect of this operation may b
described by a unitary operator acting only on the regis
I f

p5(x(21) f (x)ux&^xu.
~b! Rotate all register states byp rad around the averag

amplitude of the register state. This is done by~i! applying
the Hadamard gate to each qubit in the register;~ii ! rotating
the u00 . . . 0& state of the register by a phase ofp rad. This
rotation is similar to 2~a!, except for the fact that here it i
performed on a known state. It takes the formI 0

p52u0&^0
u1(xÞ0ux&^xu. ~iii ! Again applying the Hadamard gate
each qubit in the register.
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The combined operation on the register is described
UG5H ^ nI 0

pH ^ nI f
p .

~3! Measure the register in the computational basis.
Missing from this description is a value form. As subse-

quent Grover iterations are applied, the amplitudes of
marked states gradually increase, while the amplitudes of
unmarked states decrease. There exists an optimal numbm
of iterations at which the amplitude of the marked sta
reaches a maximum value, and thus the probability that
measurement yields a marked state is maximal. Let us de
this probability by P. It has been shown@6,9# that m is
bounded above

m< d p

4
AN

r e, ~4!

wherer is the number of marked states anddxe is the smallest
integer which is larger thanx. The exact value ofm as a
function ofN andr has been constructed in@9,10#. Moreover,
it has been shown that Grover’s algorithm is optimal in t
sense that it is as efficient as theoretically possible@11#, and
that it is possible to obtain the marked state with very h
probability, P512O(1/AN), afterm iterations@9,10#. Note
thatP'1 only occurs for the specific starting state describ
in step 1 of Algorithm 1, above. If the Grover iterations sta
from an arbitrary state, thenP may be bounded away from 1
@12#.

In this paper we are interested in determining what pr
erties of the initial state of the register are responsible for
efficiency of the quantum search algorithm. To this end,
propose modifying the initialization step, as described by
following hypothetical situation. Considern parties~Alice,
Bob, Charlie, . . . , Narelle! sharing a pure quantum sta
uf&. For simplicity, we initially assume thatuf& is a state of
n qubits, and each party is in possession of one qubit.
parties wish to cooperate in a joint venture in which they u
those particular n qubitsto perform a quantum search of th
space ofN52n elements. The parties are unable to emp
any communication channels. Prior to the search, each p
may perform local unitary operations on the qubit in th
possession. After they complete the local processing of t
qubits, all parties send~or teleport! their qubits to the search
processing unit. The only processing available in this uni
Grover’s search iterations and the subsequent measurem
Thus, the only way the qubits are allowed to interact
through Grover iterations.

This modified quantum search algorithm, which, wi
variations, we study for the remainder of this paper, may
summarized as follows.

Algorithm 2. Modified quantum search.
Inputs. ~i! A black box oracleO, whose action is defined

by Eq. ~1!; ~ii ! n11 qubits in the stateuf&u0&q .
Outputs. A candidate for a marked state,us&.
Procedure.
~1! Initialization. Apply to the input register-ancilla state

uf&u0&q , a product of arbitrary local operations on the re
ister, V5U1^ U2^ •••^ Un , and the gateHX on the an-
cilla, whereU j is an arbitrary local unitary gate acting on th
j th qubit. The resulting state is
2-2
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ENTANGLEMENT MONOTONE DERIVED FROM GROVER’S . . . PHYSICAL REVIEW A 65 062312
uc& ^ S u0&2u1&

A2
D

q

5Vuf& ^ HXu0&q . ~5!

~2! Grover iterations. Repeat the following operationm
times, wherem is chosen as described above.

~a! Rotate the marked states by a phase ofp rad, as in
Algorithm 1.

~b! Rotate all register states byp rad around the averag
amplitude of the register state, as in Algorithm 1.

The combined operation on the register is described
UG5H ^ nI 0

pH ^ nI f
p .

~3! Measure the register in the computational basis.
This modification of Grover’s algorithm may appe

somewhatad hoc. However, as we now explain, the modifi
cation allows a connection between Grover’s algorithm a
measures of entanglement to be made.

The connection follows by asking what is the maxim
probability of success,Pmax, that a marked element is found
where the maximization is over all possible local unita
operations in the initialization step? We will analyze th
question for the case where there is just asingle marked
solution, which we denotes, to the search problem. We sho
that in this casePmax is related to the entanglement present
the initial register state,uf&.

To make this assertion more precise, let us writePmax in
terms of the operatorUG

m representingm Grover iterations.
Averaging uniformly over allN possible values fors @13# we
see that this probability may be written

Pmax5 max
U1 , . . . ,Un

1

N (
s50

N21

u^suUG
m~U1^ U2^ •••^ Un!uf&u2,

~6!

where the maximization is over all local unitary operatio
U1 , . . . ,Un on the respective qubits.

To analyze Eq.~6! for a general state,uf& a simple trick
allows us consider only the action of the Grover iterations
the equal superposition stateuh&5(xux&/AN, which is usu-
ally used as the input to Grover’s algorithm. Applyingm
Grover iterates to this state yields

UG
muh.5us&1OS 1

AN
D , ~7!

where the second term is a small correction due to the
that Grover’s algorithm does not yield a solution with pro
ability 1, but rather with probability 12O(1/AN). Multiply-
ing this equation by (UG

m)† and then taking the Hermitian
conjugate gives

^suUG
m5^hu1OS 1

AN
D . ~8!

Substituting into Eq.~6! gives, for a general stateuf&,
06231
y

d

l

n

ct

Pmax5 max
U1 , . . . ,Un

1

N (
s50

N21

u^huU1^ U2^ •••^ Unuf&u2

1OS 1

AN
D . ~9!

However, uh& is a product state, so thatU1
†

^ U2
†

^ •••

^ Un
†uh& is another product state. Therefore, the optimizat

in Eq. ~9! may, equivalently, be expressed as an optimizat
over product states,

Pmax5 max
ue1 , . . . ,en&

u^e1 , . . . ,enuf&u21OS 1

AN
D , ~10!

where the maximization now runs over all product stat
ue1 , . . . ,en&5ue1& ^ •••uen&, of then qubits. In order for the
parties Alice, Bob, Charlie,. . . , Narelle to achieve this
maximum probability when running Algorithm 2, they app
to the joint stateuf& local unitary rotationsU j which have
the effect of takinguej& to (u0&1u1&)/A2.

This expression, Eq.~10!, takes a suggestive form. Up t
corrections of order 1/AN it depends monotonically on th
maximum of the overlap between all product states and
input stateuf& @14#. If the input state were a product,uf&
5uu1& ^ uu2& ^ •••^ uun&, then Pmax would be equal to 1,
again, up to small corrections. If, alternatively, the input st
were not a product state, it would never be possible for
modified search algorithm to succeed with probability
These observations suggest thatPmax depends, in some way
on the entanglement of the initial register state,uf&.

III. AN ENTANGLEMENT MEASURE FROM THE
QUANTUM SEARCH ALGORITHM

In the preceding section we suggested that the maxim
success probability,Pmax, of Algorithm 2, depended on the
entanglement of the initial state of the register. In this s
tion, we show thatPmax can be used to define an entang
ment measure, theGroverian entanglement, for arbitrary
pure multiple qubit states. We show that the Groverian
tanglement is closely related to an entanglement mea
introduced previously by Vedral, Plenio, Rippin, and Knig
@8# ~see also Vedral and Plenio@15#, and Barnum and Linden
@16#!. This connection enables us to understand some p
erties of the Groverian entanglement making it a good
tanglement measure.

Before defining the Groverian entanglement, we brie
overview some common approaches taken to the defini
of entanglement measures. Broadly speaking, there are
main approaches, anoperational approach, and anaxiomatic
approach. In the operational approach@17#, the measures o
entanglement are related to physical tasks that one can
form with a quantum state, as quantum communication. T
axiomatic approach~see, for example,@7,8#! starts from de-
sirable axioms that a ‘‘good’’ entanglement measure sho
satisfy, and then attempts to construct such measures.

The Groverian entanglement is an example of an
2-3
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OFER BIHAM, MICHAEL A. NIELSEN, AND TOBIAS J. OSBORNE PHYSICAL REVIEW A65 062312
tanglement measure defined in operational terms, nam
how well a state serves as the input to Algorithm 2. W
define the Groverian entanglement of a stateuc& by

G~c![A12Pmax. ~11!

Note that we will freely interchange the notationsuc& andc.
SincePmax takes values in the range 0<Pmax<1, it follows
that 0<G(c)<1. However, it is not immediately clear tha
G(c) is a good measure of entanglement. We show that
is the case by using the results of the preceding sectio
connectG(c) to a measure of entanglement introduced
@8#, following the axiomatic approach.

To demonstrate the connection between the Groverian
tanglement and@8#, we substitute Eq.~10! into Eq. ~11!, and
move the maximization outside the square root, where it
comes a minimization. Neglecting terms ofO(1/AN) this
gives

G~c!5 min
ue1 , . . . ,en&

A12F2~e1^ •••^ en ,c!, ~12!

whereF(•,•) is thefidelity @1,18,19#, defined in general by
F(r,s)[tr(ArsAr)1/2. Special cases of interest are the pu
state fidelity,F(a,b)5u^aub&u, and the case where one sta
is pure and one state is mixed,F(s,a)5^ausua&1/2. We now
show that we can extend the range of the minimization in
~12! to a minimization over the spaceS of all separable
density matrices, that is, density matrices which can be w
ten in the forms5( j pjr j

1
^ •••^ r j

n ,

G~c!5min
sPS

A12F2~s,c!. ~13!

To see this, simply note that by linearity ofF2(s,c) in s,
and convexity ofS, the maximal value ofF2(s,c), and thus
the minimum inA12F2(s,c), can always be obtained at a
extreme point ofS, that is, whens is a pure product state.

The expression Eq.~13! for the Groverian entanglemen
should be compared with the following definition of an e
tanglement measure, introduced in@8# by Vedral, Plenio,
Rippin, and Knight@20#:

E~c![222 max
sPS

F~s,c!. ~14!

This definition is essentially equivalent to ours, in thatG(c)
is a monotonic function ofE(c), and vice versa. Vedra
et al. introduced their definition motivated primarily by ax
omatic concerns; we have shown that, in fact, there is a c
connection between this measure and the utility of the s
as an input to Grover’s algorithm.

We now briefly describe several useful properties of
Groverian entanglement. The proofs are the same as t
given in @8# ~see also@15,16#!; what is different is the con-
nection between this measure of entanglement and Grov
algorithm. It is clear thatG(c)50 iff uc& is a product state
and that local unitary operations on the qubits leaveG(c)
invariant. What is more surprising in the context of Grove
algorithm, and is the main result of this paper, is thatG(c) is
06231
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an entanglement monotone. That is, G(c) cannot be in-
creased by local operations and classical communication

Theorem. Let uc& anduf& ben-qubit pure states such tha
it is possible to transformuc& to uf& by local operations on
the qubits, and classical communication. ThenG(c)
>G(f), up to corrections of order 1/AN.

This theorem has the remarkable implication that
probability Pmax of success for our modified Grover’s algo
rithm cannever decreaseunder local operations and classic
communication. The proof of the theorem follows easily
rewriting Eq.~13! in terms of the metric defined by@21#

B~r,s![A12F2~r,s!, ~15!

which results in

G~c!5min
sPS

B~s,c!. ~16!

Supposeuc& can be transformed intouf& by a process of
local operations and classical communication, whose ef
is represented by the quantum operation@1# E. Let s be the
state for which the minimum in Eq.~16! is achieved,G(c)
5B(s,c). It can be shown@22# that the distanceB(r,s)
between two states can never be increased by a quan
operation, so

G~c!5B~s,c! ~17!

>B„E~s!,E~ uc&^cu!… ~18!

5B„E~s!,f…. ~19!

But s is separable, soE(s) is also separable, since it can b
obtained by local operations and classical communica
from s. Thus

G~c!>B„E~s!,f…>G~f!, ~20!

which completes the proof thatG(•) is an entanglemen
monotone.

IV. EXTENSIONS OF THE GROVERIAN ENTANGLEMENT

In this section we investigate three scenarios generaliz
the earlier results aboutn-qubit pure state entanglement. Se
tion IV A addresses systems whose subsystems are not q
but instead have arbitrary~finite! dimensionality. Section
IV B specializes to the case of abipartite quantum system,
where the two subsystems have arbitrary finite dimension
ties. Finally, in Sec. IV C we consider whether the Groveri
entanglement is a good measure of entanglement for m
states.

A. Groverian entanglement for subsystems of arbitrary
dimensionality

As described earlier, Algorithm 2 is applied to a system
n qubits, and thus the Groverian entanglement is only
fined for such a system. However, with a small modificati
2-4
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ENTANGLEMENT MONOTONE DERIVED FROM GROVER’S . . . PHYSICAL REVIEW A 65 062312
the algorithm we described can be extended to the casen
systems of arbitrary finite dimensionalities,d1 ,d2 , . . . ,dn .

The only change is in the inversion about the avera
step 2~b!. To achieve the analogous operation, we need
find a replacement for the Hadamard gate. SupposeVj is any
dj3dj unitary operator such thatVj u0&5(k50

dj 21uk&/Adj ,
where u0&, . . . ,udj21& forms an orthonormal basis for th
state of thej th system. For example,Vj could be the matrix
representation of the Fourier transform over the integ
modulo dj . Then the inversion about the average can
achieved by~i! applying the operationVj to each system;~ii !
rotating theu00 . . . 0& state of the register by a phase ofp
rad. This rotation takes the formI 0

p52u0&^0u1(xÞ0ux&^xu;
~iii ! applying the inverse operationVj

†ger to each system.
With this modification, the Grover iterate can be used

perform quantum searches using systems of arbitrary dim
sionality. Proceeding as before, we find that Eq.~10! holds
even for systems of arbitrary dimensionality, that is,

Pmax5 max
ue1 , . . . ,en&

u^e1 , . . . ,enuf&u21OS 1

AN
D . ~21!

Similarly, if we define the Groverian entanglement
G(c)[A12Pmax then the same argument as before sho
that the Groverian entanglement is an entanglement mo
tone, up to corrections ofO(1/AN), and can thus be regarde
as a good measure of entanglement for composite system
arbitary dimensionality.

B. Two-party Groverian entanglement

In this section we specialize our study of the Grover
entanglement to bipartite quantum systems and derive
analytic expression for the Groverian entanglement in t
case. We suppose that the two-component systems hav
bitrary finite dimensionalities,d1 andd2. In the bipartite case
the optimization in Eq.~21! is equivalent to the maximiza
tion of the fidelity

F~U ^ Vu0&Au0&B ,f), ~22!

where we use the fact that any product state may be wri
as a product of two local unitaries operating on some fidu
stateu0&Au0&B . This problem has been considered in@23,24#,
where it was shown that the solution may be obtained
terms of theSchmidt decomposition@1# of uf&,

uf&5(
i

Api uui&Auv i&B , ~23!

whereuui& anduv i& are each orthonormal sets of vectors, a
the Schmidt coefficientsApi are non-negative real number
@23,24# showed that the maximum occurs whenU
^ Vu0&Au0&B5uui&Auv i&B where i is chosen so thatApi

5Apmax is the maximal Schmidt coefficient. Substitutin
into Eq. ~21! gives

G~c!5A12pmax. ~24!
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Thus, for a bipartite system the Groverian entanglemen
equivalent to a well-known entanglement monotone@7,25#,
the square of the largest Schmidt coefficient. Indeed, for
case of two qubits,G(c) is equivalent to the usua
asymptotic measure of pure state entanglement@17,26,27#,
the von Neumann entropy of the reduced density operator
either qubit,S52tr(rA ln rA). The relationship between th
two quantities isS5h„G2(c)…, whereh(x)52x log2x2(1
2x) log2(12x) is the binary entropy.

C. The Groverian entanglement for mixed states

We have defined the Groverian entanglement and inve
gated its properties for the special case of pure state inpu
Grover’s algorithm. How does the analogous measure
have for mixed states? Is it still a good measure of entan
ment? In this section we briefly consider these questions.
show that the natural generalization to mixed states is n
good measure of entanglement, and discuss other pos
ways of generalizing the Groverian entanglement to mix
states.

Suppose a mixed stater is used as the input in Algorithm
2, replacing the pure stateuf&. Then it is not difficult to
show that the corresponding maximal probablity of succ
is given by

Pmax5 max
ue1 , . . . ,en&

^e1 , . . . ,enurue1 , . . . ,en&1OS 1

AN
D ,

~25!

which is the linear extension of the expression in Eq.~10! to
a general density matrix. Suppose we define

G~r![A12Pmax. ~26!

For pure states this agrees with the earlier definition of
Groverian entanglement.

Supposer5r1^ •••^ rn , and thatl j is the largest ei-
genvalue ofr j . Then from Eq.~25!, Pmax5l1l2•••ln , and
thus

G~r1^ •••^ rn!5A12)
j 51

n

l j . ~27!

In the case whenr1 , . . . ,rn are pure states, all thel j51,
and G(r)50. However, when ther j are mixed, the values
of G(r) may span the entire range fromG(r)’s minimal
value of 0, right up to its maximal possible value
A121/N. It follows that G(r) cannot be an entanglemen
monotone.

From these observations we conclude thatG(r) is not a
good measure of entanglement for mixed states. The es
tial problem is thatG(r) is linear inr, and many states tha
we ordinarily think of as not being entangled can be rep
sented as a mixture of entangled states. For example,
completely mixed stateI ^ I /4 of two qubits can be written a
an equal mixture of maximally entangled states. By linear
G(I ^ I /4) therefore takes the same value as for a maxim
entangled state.
2-5



th
ur
e
te
V

d

is
r w
pr
e
i-

i
e

be
r’
e
v

,
ce
a

o
ip

an

el
b

go

all
et-

have
iven
ry

sal
tate

nt of

rch.
v-

er

ver

in
ng

een

ce
rom

um
on,

he
ters
ys

us-
nd
t.
ep-
lp-
ter

t of
ur-
re-
un-
at
the

OFER BIHAM, MICHAEL A. NIELSEN, AND TOBIAS J. OSBORNE PHYSICAL REVIEW A65 062312
Is there any sensible way of resolving this difficulty wi
mixed states? At present, we are not aware of any nat
resolution that preserves the elegant operational interpr
tion of the Groverian entanglement. It is interesting to no
however, that the measure of entanglement proposed by
dral et al. @8# applied equally well to either pure or mixe
states. In particular, for a general mixed stater of a compos-
ite system one can define

G̃~r![min
sPS

A12F2~r,s!, ~28!

where the minimization is over allseparablestatess of the
system, andF(r,s) is the fidelity, as defined earlier. This
a generalization of our measure for pure states, howeve
have not succeeded in obtaining a good operational inter
tation of G̃(r) along lines similar to the pure state cas
Another possible resolution, following a line of thought sim
lar to @16#, is to define

Ĝ~r![min(
j

pjG~c j !, ~29!

where the minimum is over all ensembles$pj ,uc j&% such
thatr5( j pj uc j&^c j u. It is not difficult to show thatĜ(r) is
an entanglement monotone, locally unitarily invariant, and
equal to zero if and only ifr is separable. However, onc
again, a good operational interpretation ofĜ(r) is presently
unknown to us.

V. SUMMARY, DISCUSSION, AND FUTURE DIRECTIONS

In this paper we have investigated the relationship
tween the success probability of a modified form of Grove
quantum search algorithm, and the amount of entanglem
present in the initial state used for the algorithm. We ha
proposed an entanglement measure forn-party pure states
the Groverian entanglement, based on the maximal suc
probability of the algorithm. Furthermore, we showed th
the Groverian entanglement is essentially equivalent t
measure of entanglement introduced by Vedral, Plenio, R
pin and Knight@8#, and used this to argue that the Groveri
entanglement andPmax are entanglement monotones.

The interpretation of Grover’s algorithm we have dev
oped in this paper should be compared with that obtained
Miyake and Wadati in their recent paper@28#. In @28# it was
shown that the progress of the unmodified Grover’s al
rithm corresponds to a traversal of a geodesic~or shortest
-

o

on

06231
al
ta-
,
e-

e
e-
.

s

-
s
nt
e

ss
t
a
-

-
y

-

path! in the complex projective Hilbert space geometry of
states, where the metric is taken to be the Fubini-study m
ric. These results are, in a sense, dual to the results we
obtained in this paper. We have managed to show that, g
the additional freedom to apply local unitaries to an arbitra
input, Grover’s algorithm not only correponds to a traver
of the shortest path between the initial state and target s
~thus complementing the results of@28#!, but also that its
success probability depends on the entanglement conte
the initial state in a monotone fashion.

Our work suggests several directions for future resea
It would be interesting to investigate other variants of Gro
er’s algorithm, including the following.

~1! Allowing multiple solutions in the search space, rath
than a single solution, as we have considered.

~2! Replacing the two Hadamard transforms in the Gro
iterate by an arbitrary unitary transformU and its inverseU†,
respectively.

~3! Tracking the evolution of the entanglement present
intermediate stages of the algorithm. Investigations alo
these lines, but in a somewhat different context, have b
reported in@29–31#.

~4! Determining the effect noise has on the performan
of the algorithm, and entanglement measures derived f
the algorithm.

It would also be interesting to investigate other quant
algorithms, such as Shor’s algorithm, quantum simulati
and adiabatic quantum computation@32#. We hope that by
pursuing such investigations, insight will be obtained into t
fundamental question of what makes quantum compu
powerful. Also it will elucidate the role entanglement pla
in quantum information processing.
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