216 research outputs found

    Effect of localized holes on the long-range order in bilayer antiferromagnets

    Full text link
    The effect of localized holes on the long-range antiferromagnetic order in bilayer cuprates is studied, by applying the renormalization group to the appropriate non-linear sigma model. The theory accounts quantitatively for the magnetic phase diagram of Ca doepd YBa_2Cu_3O_6.Comment: 2 pages, to appear in Physica

    Spin liquid in a single crystal of the frustrated diamond lattice antiferromagnet CoAl2O4

    Full text link
    We study spin liquid in the frustrated diamond lattice antiferromagnet CoAl2O4 by means of single crystal neutron scattering in zero and applied magnetic field. The magnetically ordered phase appearing below TN=8 K remains nonconventional down to 1.5 K. The magnetic Bragg peaks at the q=0 positions remain broad and their profiles have strong Lorentzian contribution. Additionally, they are connected by weak diffuse streaks along the directions. These observations are explained within the spiral spin liquid model as short-range magnetic correlations of spirals populated at these finite temperatures, as the energy minimum around q=0 is flat and the energy of excited states with q=(111) is low. The agreement is only qualitative, leading us to suspect that microstructure effects are also important. Magnetic field significantly perturbs spin correlations. The 1.5 K static magnetic moment increases from 1.58 mB/Co at zero field to 2.08 mB/Co at 10 T, while the magnetic peaks, being still broad, acquire almost Gaussian profile. Spin excitations are rather conventional spin waves at zero field, resulting in the exchange parameters J1=0.92(1) meV, J2=0.101(2) meV and the anisotropy term D=-0.0089(2) meV for CoAl2O4. The application of a magnetic field leads to a pronounced broadening of the excitations at the zone center, which at 10 T appear gapless and nearly featureless

    Flux pinning and phase separation in oxygen rich La2-xSrxCuO4+y system

    Full text link
    We have studied the magnetic characteristics of a series of super-oxygenated La2-xSrxCuO4+y samples. As shown in previous work, these samples spontaneously phase separate into an oxygen rich superconducting phase with a TC near 40 K and an oxygen poor magnetic phase that also orders near 40 K. All samples studied are highly magnetically reversible even to low temperatures. Although the internal magnetic regions of these samples might be expected to act as pinning sites, our present study shows that they do not favor flux pinning. Flux pinning requires a matching condition between the defect and the superconducting coherence length. Thus, our results imply that the magnetic regions are too large to act as pinning centers. This also implies that the much greater flux pinning in typical La2-xSrxCuO4 materials is the result of nanoscale inhomogeneities that grow to become the large magnetic regions in the super-oxygenated materials. The superconducting regions of the phase separated materials are in that sense cleaner and more homogenous than in the typical cuprate superconductor.Comment: 4 figures 8 pages Submitted to PR

    The Accelerated expansion of the Universe as a crossover phenomenon

    Get PDF
    We show that the accelerated expansion of the Universe can be viewed as a crossover phenomenon where the Newton constant and the Cosmological constant are actually scaling operators, dynamically evolving in the attraction basin of a non-Gaussian infrared fixed point, whose existence has been recently discussed. By linearization of the renormalized flow it is possible to evaluate the critical exponents, and it turns out that the approach to the fixed point is ruled by a marginal and a relevant direction. A smooth transition between the standard Friedmann--Lemaitre--Robertson--Walker (FLRW) cosmology and the observed accelerated expansion is then obtained, so that ΩMΩΛ\Omega_M \approx \Omega_\Lambda at late times.Comment: 12 pages, latex, use bibtex. In the final version, the presentation has been improved, and new references have been adde

    Magnetic ground state and magnon-phonon interaction in multiferroic h-YMnO3_3

    Get PDF
    Inelastic neutron scattering has been used to study the magneto-elastic excitations in the multiferroic manganite hexagonal YMnO3_3. An avoided crossing is found between magnon and phonon modes close to the Brillouin zone boundary in the (a,b)(a,b)-plane. Neutron polarization analysis reveals that this mode has mixed magnon-phonon character. An external magnetic field along the cc-axis is observed to cause a linear field-induced splitting of one of the spin wave branches. A theoretical description is performed, using a Heisenberg model of localized spins, acoustic phonon modes and a magneto-elastic coupling via the single-ion magnetostriction. The model quantitatively reproduces the dispersion and intensities of all modes in the full Brillouin zone, describes the observed magnon-phonon hybridized modes, and quantifies the magneto-elastic coupling. The combined information, including the field-induced magnon splitting, allows us to exclude several of the earlier proposed models and point to the correct magnetic ground state symmetry, and provides an effective dynamic model relevant for the multiferroic hexagonal manganites.Comment: 12 pages, 10 figure

    Magnetic-field-induced spin excitations and renormalized spin gap of the underdoped superconductor La1.895_{1.895}Sr0.105_{0.105}CuO4_{4}

    Get PDF
    High-resolution neutron inelastic scattering experiments in applied magnetic fields have been performed on La1.895_{1.895}Sr0.105_{0.105}CuO4_{4} (LSCO). In zero field, the temperature dependence of the low-energy peak intensity at the incommensurate momentum-transfer $\mathbf{Q}^{\ }_{\mathrm{IC}}=(0.5,0.5\pm\delta,0),(0.5\pm\delta,0.5,0)exhibitsananomalyatthesuperconducting exhibits an anomaly at the superconducting T^{\}_{c}$ which broadens and shifts to lower temperature upon the application of a magnetic field along the c-axis. A field-induced enhancement of the spectral weight is observed, but only at finite energy transfers and in an intermediate temperature range. These observations establish the opening of a strongly downward renormalized spin gap in the underdoped regime of LSCO. This behavior contrasts with the observed doping dependence of most electronic energy features.Comment: accepted for publication in Phys. Rev. Let

    Suppression of the structural phase transition and lattice softening in slightly underdoped Ba(1-x)K(x)Fe2As2 with electronic phase separation

    Get PDF
    We present x-ray powder diffraction (XRPD) and neutron diffraction measurements on the slightly underdoped iron pnictide superconductor Ba(1-x)K(x)Fe2As2, Tc = 32K. Below the magnetic transition temperature Tm = 70K, both techniques show an additional broadening of the nuclear Bragg peaks, suggesting a weak structural phase transition. However, macroscopically the system does not break its tetragonal symmetry down to 15 K. Instead, XRPD patterns at low temperature reveal an increase of the anisotropic microstrain proportionally in all directions. We associate this effect with the electronic phase separation, previously observed in the same material, and with the effect of lattice softening below the magnetic phase transition. We employ density functional theory to evaluate the distribution of atomic positions in the presence of dopant atoms both in the normal and magnetic states, and to quantify the lattice softening, showing that it can account for a major part of the observed increase of the microstrain.Comment: 7 pages, 4 figure

    Similarity of slow stripe fluctations between Sr-doped cuprates and oxygen-doped nickelates

    Get PDF
    Stripe fluctuations in La2NiO4.17 have been studied by 139La NMR using the field and temperature dependence of the linewidth and relaxation rates. In the formation process of the stripes the NMR line intensity is maximal below 230K, starts to diminish around 140K, disappears around 50K and recovers at 4K. These results are shown to be consistent with, but completely complementary to neutron measurements, and to be generic for oxygen doped nickelates and underdoped cuprates.Comment: 4 pages including 4 figure

    Specific heat of MgB2_2 in a one- and a two-band model from first-principles calculations

    Get PDF
    The heat capacity anomaly at the transition to superconductivity of the layered superconductor MgB2_2 is compared to first-principles calculations with the Coulomb repulsion, μ\mu^\ast, as the only parameter which is fixed to give the measured TcT_c. We solve the Eliashberg equations for both an isotropic one-band and a two-band model with different superconducting gaps on the π\pi and σ\sigma Fermi surfaces. The agreement with experiments is considerably better for the two-band model than for the one-band model.Comment: final published versio

    Coupling of magnetic and ferroelectric hysteresis by a multi-component magnetic structure in Mn2GeO4

    Full text link
    The olivine compound Mn2GeO4 is shown to feature both a ferroelectric polarization and a ferromagnetic magnetization that are directly coupled and point along the same direction. We show that a spin spiral generates ferroelectricity (FE), and a canted commensurate order leads to weak ferromagnetism (FM). Symmetry suggests that the direct coupling between the FM and FE is mediated by Dzyaloshinskii-Moriya interactions that exist only in the ferroelectric phase, controlling both the sense of the spiral rotation and the canting of the commensurate structure. Our study demonstrates how multi-component magnetic structures found in magnetically-frustrated materials like Mn2GeO4 provide a new route towards functional materials that exhibit coupled FM and FE.Comment: Supplementary material available on request, or at publisher websit
    corecore