research

Magnetic-field-induced spin excitations and renormalized spin gap of the underdoped superconductor La1.895_{1.895}Sr0.105_{0.105}CuO4_{4}

Abstract

High-resolution neutron inelastic scattering experiments in applied magnetic fields have been performed on La1.895_{1.895}Sr0.105_{0.105}CuO4_{4} (LSCO). In zero field, the temperature dependence of the low-energy peak intensity at the incommensurate momentum-transfer $\mathbf{Q}^{\ }_{\mathrm{IC}}=(0.5,0.5\pm\delta,0),(0.5\pm\delta,0.5,0)exhibitsananomalyatthesuperconducting exhibits an anomaly at the superconducting T^{\}_{c}$ which broadens and shifts to lower temperature upon the application of a magnetic field along the c-axis. A field-induced enhancement of the spectral weight is observed, but only at finite energy transfers and in an intermediate temperature range. These observations establish the opening of a strongly downward renormalized spin gap in the underdoped regime of LSCO. This behavior contrasts with the observed doping dependence of most electronic energy features.Comment: accepted for publication in Phys. Rev. Let

    Similar works