715 research outputs found

    A combined FEG-SEM and TEM study of silicon nanodot assembly

    Get PDF
    Nanodots forming dense assembly on a substrate are difficult to characterize in terms of size, density, morphology and cristallinity. The present study shows how valuable information can be obtained by a combination of electron microscopy techniques. A silicon nanodots deposit has been studied by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) to estimate essentially the dot size and density, quantities emphasized because of their high interest for application. High resolution SEM indicates a density of 1.6 × 1012 dots/cm2 for a 5 nm to 10 nm dot size. TEM imaging using a phase retrieval treatment of a focus series gives a higher dot density (2 × 1012 dots/cm2) for a 5 nm dot size. High Resolution Transmission Electron Microscopy (HRTEM) indicates that the dots are crystalline which is confirmed by electron diffraction. According to HRTEM and electron diffraction, the dot size is about 3 nm which is significantly smaller than the SEM and TEM results. These differences are not contradictory but attributed to the fact that each technique is probing a different phenomenon. A core-shell structure for the dot is proposed which reconcile all the results. All along the study, Fourier transforms have been widely used under many aspects

    Germination at extreme temperatures : implications for alpine shrub encroachment

    Get PDF
    Worldwide, shrub cover is increasing across alpine and tundra landscapes in response to warming ambient temperatures and declines in snowpack. With a changing climate, shrub encroachment may rely on recruitment from seed occurring outside of the optimum temperature range. We used a temperature gradient plate in order to determine the germination niche of 14 alpine shrub species. We then related the range in laboratory germination temperatures of each species to long-term average temperature conditions at: (1) the location of the seed accession site and (2) across each species geographic distribution. Seven of the species failed to germinate sufficiently to be included in the analyses. For the other species, the germination niche was broad, spanning a range in temperatures of up to 17 ◦C, despite very low germination rates in some species. Temperatures associated with the highest germination percentages were all above the range of temperatures present at each specific seed accession site. Optimum germination temperatures were consistently within or higher than the range of maximum temperatures modelled across the species’ geographic distribution. Our results indicate that while some shrub species germinate well at high temperatures, others are apparently constrained by an inherent seed dormancy. Shrub encroachment in alpine areas will likely depend on conditions that affect seed germination at the microsite-scale, despite overall conditions becoming more suitable for shrubs at high elevations

    Effects of warming temperatures on germination responses and trade-offs between seed traits in an alpine plant

    Get PDF
    1. Climate warming may affect multiple aspects of plant life history, including important factors such as germination responses and the key trade-off between offspring size and number. As a case study to address these concepts, we used an alpine plant (waxy bluebell, Wahlenbergia ceracea; Campanulaceae) that shows plasticity to warming in seed traits and in which seed dormancy status regulates germination. We chose an alpine species because alpine environments are ecosystems particularly under threat by climate change. 2. We conducted germination assays under cool and warm temperatures using seeds produced by individuals that were grown under historical (cooler) and future (warmer) temperature scenarios. We assessed the presence of a seed size vs number trade-off, and then examined the effects of seed number and size on germination percentage, the fractions of dormant and viable seeds, and germination velocity. Further, we examined whether warming during parental growth and during germination affected these relationships. 3. We found evidence for a seed size vs number trade-off only under historical parental temperatures. Indeed, under future growth temperatures, parental plants produced fewer and smaller seeds and there was no evidence of a trade-off. However, the reductions in both seed traits under warming did not affect germination, despite correlations of seed size and number with germination traits. Warming increased germination, particularly of larger seeds, but overall it resulted in more than fourfold reductions in parental fitness. 4. Synthesis. Our study shows the importance of growth conditions when evaluating the seed size vs number trade-off. Stressful conditions, such as warmer temperatures, can restrain the ability of plants to reach optimal investment in reproduction, masking the trade-off. By analysing responses across the whole life cycle, we show here an overall detrimental effect of warming, highlighting the potential risk of climate change for W. ceracea, and, potentially, for alpine plant communities more widely.Files can be opened using Excel and analysed using R.Funding provided by: Australian Research CouncilCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100000923Award Number: DP170101681Experiments were conducted using the plant species Wahlnebrgia ceracea (waxy bluebells). Two datasets were used in this manuscript. 1) Seed size vs number trade-off: Parental individuals from a total of 30 lines ('Line') were grown in growth chambers for 191 days under temperature conditions of a historical/cooler (1960–1970) or a projected future/warmer (2090–2100) climate ('Parental_Temperature'). The parental individuals were randomly assigned to one of three blocks, which corresponded to positions inside the chambers, and each block was equivalent in all chambers ('Block'). Day and night temperatures during the experiment were changed every 15 days to mimic seasonality, with the maximum day temperatures during the peak of summer being 24°C and 29°C for the historical and future parental temperatures, respectively. After 100 days since the imposition of the temperature treatments (during the peak of the summer), half of the plants were moved for 5 days to new chambers, where the temperature was 5°C above the respective treatments, i.e., 29°C and 34°C ('Heatwave'). After this time, the parental individuals were moved back to their respective historical or future temperature treatments. We collected the seeds throughout the 191 days of parental growth, and we stored them in desiccators for at least 11 weeks. After this time, we calculated seed size ('Seed_Size') as the average mass of three lots of 50 seeds divided by 50. We calculated seed number ('Seed_Number') as the ratio between the cumulative mass of the seeds produced by each parental individual and seed size. The 30 lines of the parental individuals were obtained by crossing plants that originated from seeds that were collected at the same elevation, either high or low elevation ('Elevation') in sites within Kosciuszko National Park, NSW, Australia. Therefore, 14 lines originated from high elevations and 14 lines from low elevations. 2) Germination responses - seed traits correlations: The seeds were harvested from the parental individuals grown under historical/cooler or projected future/warmer temperatures ('Parental_Temperature') (see above) from a subset of 14 lines ('Line'). These seeds were used in germination assays in the glasshouse under cool (25°C) or warm temperatures (30°C) ('Germination_Temperature'). We measured seed size ('Seed_Size') as the average mass of three lots of 50 seeds; then these seeds were sowed in agar dishes (25 seeds per dish, 2 dishes per temperature treatment from each parental individual). Seed number ('Seed_Number') was the same as above. Dishes were left under temperature treatments for 4 weeks to allow germination of the non-dormant fraction of the seeds ('Not_Dormant_Seeds') and germination was checked once per week. Then, all the dishes were moved to a cold room at 4–5°C in the dark for 4 weeks to allow cold stratification. After this time, dishes were moved back to the glasshouse under the same temperature treatments as before to allow germination of the dormant seeds. We considered seeds to be dormant ('Dormant_seeds') if they germinated during or after cold stratification or if they did not germinate at all but were still determined to be viable at the end of the experiment. We considered seed to be viable ('Viable_Seeds') if they germinated ('Germinated_Seeds') as well as the seeds that contained an endosperm but still did not germinate ('Not_Germinated_Seeds'), while we considered empty seeds as non-viable ('Not_Viable_Seeds'). Germinated and not germinated seeds (as above) were used to calculate the germination percentage. We calculated germination velocity ('Germination_Velocity') as the reciprocal of the mean germination time (germination velocity (germination (%) week-1) GV = (G1 + G2 +…+ Gn) / (G1 x T1 + G2 x T2 +…+ Gn x Tn), where Gn is the number of new germinating seeds at each sampling point, and Tn is the time between each sampling point (= one week). The files provided present the datasets in their first sheet and keys with the definitions of each term in the second sheet

    Tolerance of warmer temperatures does not confer resilience to heatwaves in an Alpine herb

    Get PDF
    Climate change is generating both sustained trends in average temperatures and higher frequency and intensity of extreme events. This poses a serious threat to biodiversity, especially in vulnerable environments, like alpine systems. Phenotypic plasticity is considered to be an adaptive mechanism to cope with climate change in situ, yet studies of the plastic responses of alpine plants to high temperature stress are scarce. Future weather extremes will occur against a background of warmer temperatures, but we do not know whether acclimation to warmer average temperatures confers tolerance to extreme heatwaves. Nor do we know whether populations on an elevational gradient differ in their tolerance or plasticity in response to warming and heatwave events. We investigated the responses of a suite of functional traits of an endemic Australian alpine herb, Wahlenbergia ceracea, to combinations of predicted future (warmer) temperatures and (relative) heatwaves. We also tested whether responses differed between high- vs. low-elevation populations. When grown under warmer temperatures, W. ceracea plants showed signs of acclimation by means of higher thermal tolerance (Tcrit, T50, and Tmax). They also invested more in flower production, despite showing a concurrent reduction in photosynthetic efficiency (Fv/Fm) and suppression of seed production. Heatwaves reduced both photosynthetic efficiency and longevity. However, we found no evidence that acclimation to warmer temperatures conferred tolerance of the photosynthetic machinery to heatwaves. Instead, when exposed to heatwaves following warmer growth temperatures, plants had lower photosynthetic efficiency and underwent a severe reduction in seed production. High- and low-elevation populations and families exhibited limited genetic variation in trait means and plasticity in response to temperature. We conclude that W. ceracea shows some capacity to acclimate to warming conditions but there is no evidence that tolerance of warmer temperatures confers any resilience to heatwaves.This research was supported by the Australian Research Council (DP170101681), an International Ph.D. Scholarship to RN and an ARC Future Fellowship FT110100453 to LK. Research grants funded all research related costs (such as renting growth chambers or buying equipment), while the scholarship paid a stipend to RN

    The Social and Economic Long Term Monitoring Program (SELTMP) 2014: Recreation in the Great Barrier Reef

    Get PDF
    [Extract] Introduction.\ud People love to spend their recreational time visiting the Great Barrier Reef World Heritage Area (GBRWHA), (GBRMPA, 2009), and many people are doing it! The recent SELTMP surveys revealed that 95% of residents of coastal town adjacent to the GBR had visited the GBRWHA for recreation at least once, and 87% had visited in the previous 12 months. Many of these visits appeared to be to a mainland beach to walk, swim, and relax. However, 68% of people who told us about their recent trips had been beyond the mainland beach to islands, reefs, shoals, etc., to take part in activities such as fishing, snorkelling and diving. Other activities include boating, sailing, jet skiing, camping, kayaking, sight-seeing, photography, and wildlife viewing, to name a few. Recreational visitors are currently very satisfied with their use of the Marine Park.\ud \ud While most trips beyond the beach were made by ferry, about a third of these trips were accessed by residents' own or someone else's boat. While not everyone is using their vessel very frequently, vessel registration by coastal residents has increased substantially in recent years (Old Department of Transport, unpublished data, 2011).\ud \ud Given all of this activity, it is not surprising that recreation in the GBRWHA provides significant social and cultural benefits as well as many health and wellbeing benefits associated with the psychological interaction with nature (Synergies Economic Consulting, 2012). In economic terms, recreation (defined by Deloitte Access Economics as GBR catchment residents visiting an island, sailing, boating and fishing), contributed 126mindirectvalueor126m in direct value or 243.9m value added to the Australian economy in 2011/12 (Deloitte Access Economics, 2013). This estimate did not include beach visits.\ud Importantly, recreation differs from tourism. The Great Barrier Reef Marine Park Authority define recreation as an independent visit for enjoyment that is not part of a commercial operation (GBRMPA, 2012). For the purposes of the SELTMP Surveys (outline following), any resident of the GBR catchment who visits the GBRWHA is included within recreation; while tourists are defined as those residing outside of the GBR catchment

    Advances in monitoring the human dimension of natural resource systems: an example from the Great Barrier Reef

    Get PDF
    The aim of this paper is to demonstrate the feasibility and potential utility of decision-centric social-economic monitoring using data collected from Great Barrier Reef (Reef) region. The social and economic long term monitoring program (SELTMP) for the Reef is a novel attempt to monitor the social and economic dimensions of social-ecological change in a globally and nationally important region. It represents the current status and condition of the major user groups of the Reef with the potential to simultaneously consider trends, interconnections, conflicts, dependencies and vulnerabilities. Our approach was to combine a well-established conceptual framework with a strong governance structure and partnership arrangement that enabled the co-production of knowledge. The framework is a modification of the Millennium Ecosystem Assessment and it was used to guide indicator choice. Indicators were categorised as; (i) resource use and dependency, (ii) ecosystem benefits and well-being, and (iii) drivers of change. Data were collected through secondary datasets where existing and new datasets were created where not, using standard survey techniques. Here we present an overview of baseline results of new survey data from commercial-fishers (n =210), marine-based tourism operators (n =119), tourists (n =2877), local residents (n =3181), and other Australians (n =2002). The indicators chosen describe both social and economic components of the Reef system and represent an unprecedented insight into the ways in which people currently use and depend on the Reef, the benefits that they derive, and how they perceive, value and relate to the Reef and each other. However, the success of a program such as the SELTMP can only occur with well-translated cutting-edge data and knowledge that are collaboratively produced, adaptive, and directly feeds into current management processes. We discuss how data from the SELTMP have already been incorporated into Reef management decision-making through substantial inclusion in three key policy documents

    Definition of the Chalcogen Bond (IUPAC Recommendations 2019)

    Get PDF
    This recommendation proposes a definition for the term “chalcogen bond”; it is recommended the term is used to designate the specific subset of inter- and intramolecular interactions formed by chalcogen atoms wherein the Group 16 element is the electrophilic site

    Atomic resolution interface structure and vertical current injection in highly uniform MoS2MoS_{2} heterojunctions with bulk GaN

    Full text link
    The integration of two-dimensional MoS2MoS_{2} with GaNGaN recently attracted significant interest for future electronic/optoelectronic applications. However, the reported studies have been mainly carried out using heteroepitaxial GaNGaN templates on sapphire substrates, whereas the growth of MoS2MoS_{2} on low-dislocation-density bulk GaN can be strategic for the realization of truly vertical devices. In this paper, we report the growth of ultrathin MoS2MoS_{2} films, mostly composed by single-layers (1L1L), onto homoepitaxial nGaNn-GaN on n+n^{+} bulk substrates by sulfurization of a pre-deposited MoOxMoO_{x} film. Highly uniform and conformal coverage of the GaNGaN surface was demonstrated by atomic force microscopy, while very low tensile strain (0.05%) and a significant p+p^{+}-type doping (4.5×1012cm24.5 \times 10^{12} cm^{-2}) of 1LMoS21L-MoS_{2} was evaluated by Raman mapping. Atomic resolution structural and compositional analyses by aberration-corrected electron microscopy revealed a nearly-ideal van der Waals interface between MoS2MoS_{2} and the GaGa-terminated GaNGaN crystal, where only the topmost GaGa atoms are affected by oxidation. Furthermore, the relevant lattice parameters of the MoS2/GaNMoS_{2}/GaN heterojunction, such as the van der Waals gap, were measured with high precision. Finally, the vertical current injection across this 2D/3D heterojunction has been investigated by nanoscale current-voltage analyses performed by conductive atomic force microscopy, showing a rectifying behavior with an average turn-on voltage Von=1.7VV_{on}=1.7 V under forward bias, consistent with the expected band alignment at the interface between p+p^{+} doped 1LMoS21L-MoS_{2} and nGaNn-GaN.Comment: 21 pages, 6 figure
    corecore