1,429 research outputs found
Electrical charging of ash in Icelandic volcanic plumes
The existence of volcanic lightning and alteration of the atmospheric
potential gradient in the vicinity of near-vent volcanic plumes provides strong
evidence for the charging of volcanic ash. More subtle electrical effects are
also visible in balloon soundings of distal volcanic plumes. Near the vent,
some proposed charging mechanisms are fractoemission, triboelectrification, and
the so-called "dirty thunderstorm" mechanism, which is where ash and convective
clouds interact electrically to enhance charging. Distant from the vent, a
self-charging mechanism, probably triboelectrification, has been suggested to
explain the sustained low levels of charge observed on a distal plume. Recent
research by Houghton et al. (2013) linked the self-charging of volcanic ash to
the properties of the particle size distribution, observing that a highly
polydisperse ash distribution would charge more effectively than a monodisperse
one. Natural radioactivity in some volcanic ash could also contribute to
self-charging of volcanic plumes. Here we present laboratory measurements of
particle size distributions, triboelectrification and radioactivity in ash
samples from the Gr\'{i}msv\"{o}tn and Eyjafjallaj\"{o}kull volcanic eruptions
in 2011 and 2010 respectively, and discuss the implications of our findings.Comment: XV Conference on Atmospheric Electricity, 15-20 June 2014, Norman,
Oklahoma, US
A Statistical Method for Estimating Luminosity Functions using Truncated Data
The observational limitations of astronomical surveys lead to significant
statistical inference challenges. One such challenge is the estimation of
luminosity functions given redshift and absolute magnitude measurements
from an irregularly truncated sample of objects. This is a bivariate density
estimation problem; we develop here a statistically rigorous method which (1)
does not assume a strict parametric form for the bivariate density; (2) does
not assume independence between redshift and absolute magnitude (and hence
allows evolution of the luminosity function with redshift); (3) does not
require dividing the data into arbitrary bins; and (4) naturally incorporates a
varying selection function. We accomplish this by decomposing the bivariate
density into nonparametric and parametric portions. There is a simple way of
estimating the integrated mean squared error of the estimator; smoothing
parameters are selected to minimize this quantity. Results are presented from
the analysis of a sample of quasars.Comment: 30 pages, 9 figures, Accepted for publication in Ap
Recommended from our members
On the microphysical effects of observed cloud edge charging
Liquid layer clouds are abundant globally. Lacking strong convection, they do not become electrified by the usual thunderstorm mechanisms of collisional electrification between hydrometeors of different phases. Instead, the background global circuit current flow in fair weather is largely unaffected by the layer cloud’s presence, and, if the layer cloud is extensive horizontally, the vertical
fair weather conduction current passes through the cloud. A consequence of the vertical current flow is that, at the cloud-air boundary where there is a conductivity transition and droplets form or evaporate, droplet charging occurs. Charge can affect both droplet evaporation and droplet-droplet collisions. Using new radiosonde instrumentation, the charge observed at layer cloud edges is evaluated for both these microphysical droplet processes. This shows that the charging is more likely to affect collision processes than activation, for small droplets. Enhancing the collection efficiency of small droplets modifies their evolution and propagates through the size distribution to shorten the autoconversion timescale to rain drops, and the cloud radiative properties. Because the conduction current density is influenced by both external (e.g. solar modulation of high energy particles) and internal (e.g. ENSO) factors, current flow leading to layer cloud edge charging provides a possible route for expressing solar influences on the climate system and a teleconnection mechanism for communicating internal climate variability
The HSV-1 Latency-Associated Transcript Functions to Repress Latent Phase Lytic Gene Expression and Suppress Virus Reactivation from Latently Infected Neurons
open access articleHerpes simplex virus 1 (HSV-1) establishes life-long latent infection within sensory neurons, during which viral lytic gene expression is silenced. The only highly expressed viral gene product during latent infection is the latency-associated transcript (LAT), a non-protein coding RNA that has been strongly implicated in the epigenetic regulation of HSV-1 gene expression. We have investigated LAT-mediated control of latent gene expression using chromatin immunoprecipitation analyses and LAT-negative viruses engineered to express firefly luciferase or β-galactosidase from a heterologous lytic promoter. Whilst we were unable to determine a significant effect of LAT expression upon heterochromatin enrichment on latent HSV-1 genomes, we show that reporter gene expression from latent HSV-1 genomes occurs at a greater frequency in the absence of LAT. Furthermore, using luciferase reporter viruses we have observed that HSV-1 gene expression decreases during long-term latent infection, with a most marked effect during LAT-negative virus infection. Finally, using a fluorescent mouse model of infection to isolate and culture single latently infected neurons, we also show that reactivation occurs at a greater frequency from cultures harbouring LAT-negative HSV-1. Together, our data suggest that the HSV-1 LAT RNA represses HSV-1 gene expression in small populations of neurons within the mouse TG, a phenomenon that directly impacts upon the frequency of reactivation and the maintenance of the transcriptionally active latent reservoir
Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder
Mammalian microRNAs are emerging as key regulators of the development and function of the immune system. Here, we report a strong but transient induction of miR-155 in mouse bone marrow after injection of bacterial lipopolysaccharide (LPS) correlated with granulocyte/monocyte (GM) expansion. Demonstrating the sufficiency of miR-155 to drive GM expansion, enforced expression in mouse bone marrow cells caused GM proliferation in a manner reminiscent of LPS treatment. However, the miR-155–induced GM populations displayed pathological features characteristic of myeloid neoplasia. Of possible relevance to human disease, miR-155 was found to be overexpressed in the bone marrow of patients with certain subtypes of acute myeloid leukemia (AML). Furthermore, miR-155 repressed a subset of genes implicated in hematopoietic development and disease. These data implicate miR-155 as a contributor to physiological GM expansion during inflammation and to certain pathological features associated with AML, emphasizing the importance of proper miR-155 regulation in developing myeloid cells during times of inflammatory stress
Target the fence-sitters
Past waves of vaccine rejection in industrialized nations have a lot to teach us about preventing future ones
Assessment of human influenza pandemic scenarios in Europe
The response to the emergence of the 2009 influenza A(H1N1) pandemic was the result of a decade of pandemic planning, largely centred on the threat of an avian influenza A(H5N1) pandemic. Based on a literature review, this study aims to define a set of new pandemic scenarios that could be used in case of a future influenza pandemic. A total of 338 documents were identified using a searching strategy based on seven combinations of keywords. Eighty-three of these documents provided useful information on the 13 virus-related and health-system-related parameters initially considered for describing scenarios. Among these, four parameters were finally selected (clinical attack rate, case fatality rate, hospital admission rate, and intensive care admission rate) and four different levels of severity for each of them were set. The definition of six most likely scenarios results from the combination of four different levels of severity of the four final parameters (256 possible scenarios). Although it has some limitations, this approach allows for more flexible scenarios and hence it is far from the classic scenarios structure used for pandemic plans until 2009
Crossover scaling from classical to nonclassical critical behavior
We study the crossover between classical and nonclassical critical behaviors.
The critical crossover limit is driven by the Ginzburg number G. The
corresponding scaling functions are universal with respect to any possible
microscopic mechanism which can vary G, such as changing the range or the
strength of the interactions. The critical crossover describes the unique flow
from the unstable Gaussian to the stable nonclassical fixed point. The scaling
functions are related to the continuum renormalization-group functions. We show
these features explicitly in the large-N limit of the O(N) phi^4 model. We also
show that the effective susceptibility exponent is nonmonotonic in the
low-temperature phase of the three-dimensional Ising model.Comment: 5 pages, final version to appear in Phys. Rev.
Critical behavior in colloid-polymer mixtures: theory and simulation
We extensively investigated the critical behavior of mixtures of colloids and
polymers via the two-component Asakura-Oosawa model and its reduction to a
one-component colloidal fluid using accurate theoretical and simulation
techniques. In particular the theoretical approach, hierarchical reference
theory [Adv. Phys. 44, 211 (1995)], incorporates realistically the effects of
long-range fluctuations on phase separation giving exponents which differ
strongly from their mean-field values, and are in good agreement with those of
the three-dimensional Ising model. Computer simulations combined with
finite-size scaling analysis confirm the Ising universality and the accuracy of
the theory, although some discrepancy in the location of the critical point
between one-component and full-mixture description remains. To assess the limit
of the pair-interaction description, we compare one-component and two-component
results.Comment: 15 pages, 10 figures. Submitted to Phys. Rev.
- …