16 research outputs found

    Partitioning the Heritability of Tourette Syndrome and Obsessive Compulsive Disorder Reveals Differences in Genetic Architecture

    Get PDF
    The direct estimation of heritability from genome-wide common variant data as implemented in the program Genome-wide Complex Trait Analysis (GCTA) has provided a means to quantify heritability attributable to all interrogated variants. We have quantified the variance in liability to disease explained

    Measurement of CP asymmetries and branching fraction ratios of B− decays to two charm mesons

    Get PDF
    The CPCP asymmetries of seven B−B^- decays to two charm mesons are measured using data corresponding to an integrated luminosity of 9fb−19\text{fb}^{-1} of proton-proton collisions collected by the LHCb experiment. Decays involving a D∗0D^{*0} or Ds∗−D^{*-}_s meson are analysed by reconstructing only the D0D^0 or Ds−D^-_s decay products. This paper presents the first measurement of ACP(B−→Ds∗−D0)\mathcal{A}^{CP}(B^- \rightarrow D^{*-}_s D^0) and ACP(B−→Ds−D∗0)\mathcal{A}^{CP}(B^- \rightarrow D^{-}_s D^{*0}), and the most precise measurement of the other five CPCP asymmetries. There is no evidence of CPCP violation in any of the analysed decays. Additionally, two ratios between branching fractions of selected decays are measured.The CP asymmetries of seven B−^{−} decays to two charm mesons are measured using data corresponding to an integrated luminosity of 9 fb−1^{−1} of proton-proton collisions collected by the LHCb experiment. Decays involving a D∗0^{*0} or Ds∗− {D}_s^{\ast -} meson are analysed by reconstructing only the D0^{0} or Ds− {D}_s^{-} decay products. This paper presents the first measurement of ACP \mathcal{A} ^{CP}(B−^{−}→Ds∗− {D}_s^{\ast -} D0^{0}) and ACP \mathcal{A} ^{CP}(B−^{−}→Ds− {D}_s^{-} D∗0^{∗0}), and the most precise measurement of the other five CP asymmetries. There is no evidence of CP violation in any of the analysed decays. Additionally, two ratios between branching fractions of selected decays are measured.[graphic not available: see fulltext]The CPCP asymmetries of seven B−B^- decays to two charm mesons are measured using data corresponding to an integrated luminosity of 9 fb−19\text{ fb}^{-1} of proton-proton collisions collected by the LHCb experiment. Decays involving a D∗0D^{*0} or Ds∗−D^{*-}_s meson are analysed by reconstructing only the D0D^0 or Ds−D^-_s decay products. This paper presents the first measurement of ACP(B−→Ds∗−D0)\mathcal{A}^{CP}(B^- \rightarrow D^{*-}_s D^0) and ACP(B−→Ds−D∗0)\mathcal{A}^{CP}(B^- \rightarrow D^{-}_s D^{*0}), and the most precise measurement of the other five CPCP asymmetries. There is no evidence of CPCP violation in any of the analysed decays. Additionally, two ratios between branching fractions of selected decays are measured

    Helium identification with LHCb

    Get PDF
    The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pp collision data at √(s) = 13 TeV recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5 fb-1. A total of around 105 helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50% with a corresponding background rejection rate of up to O(10^12). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei

    Momentum scale calibration of the LHCb spectrometer

    Get PDF
    For accurate determination of particle masses accurate knowledge of the momentum scale of the detectors is crucial. The procedure used to calibrate the momentum scale of the LHCb spectrometer is described and illustrated using the performance obtained with an integrated luminosity of 1.6 fb-1 collected during 2016 in pp running. The procedure uses large samples of J/ψ → ÎŒ + ÎŒ - and B+ → J/ψ K + decays and leads to a relative accuracy of 3 × 10-4 on the momentum scale

    Curvature-bias corrections using a pseudomass method

    Get PDF
    Momentum measurements for very high momentum charged particles, such as muons from electroweak vector boson decays, are particularly susceptible to charge-dependent curvature biases that arise from misalignments of tracking detectors. Low momentum charged particles used in alignment procedures have limited sensitivity to coherent displacements of such detectors, and therefore are unable to fully constrain these misalignments to the precision necessary for studies of electroweak physics. Additional approaches are therefore required to understand and correct for these effects. In this paper the curvature biases present at the LHCb detector are studied using the pseudomass method in proton-proton collision data recorded at centre of mass energy √(s)=13 TeV during 2016, 2017 and 2018. The biases are determined using Z→Ό + ÎŒ - decays in intervals defined by the data-taking period, magnet polarity and muon direction. Correcting for these biases, which are typically at the 10-4 GeV-1 level, improves the Z→Ό + ÎŒ - mass resolution by roughly 18% and eliminates several pathological trends in the kinematic-dependence of the mean dimuon invariant mass

    Model-independent measurement of charm mixing parameters in <math display="inline"><mover accent="true"><mi>B</mi><mo stretchy="false">ÂŻ</mo></mover><mo stretchy="false">→</mo><msup><mi>D</mi><mn>0</mn></msup><mo stretchy="false">(</mo><mo stretchy="false">→</mo><msubsup><mi>K</mi><mi>S</mi><mn>0</mn></msubsup><msup><mi>π</mi><mo>+</mo></msup><msup><mi>π</mi><mo>-</mo></msup><mo stretchy="false">)</mo><msup><mi>ÎŒ</mi><mo>-</mo></msup><msub><mover accent="true"><mi>Îœ</mi><mo stretchy="false">ÂŻ</mo></mover><mi>ÎŒ</mi></msub><mi>X</mi></math> decays

    Get PDF
    International audienceA measurement of charm mixing and CP-violating parameters is reported, using B¯→D0(→KS0π+π-)âąÎŒ-ÎœÂŻÎŒX decays reconstructed in proton-proton collisions collected by the LHCb experiment during the years 2016 to 2018, corresponding to an integrated luminosity of 5.4  fb-1. The measured mixing and CP-violating parameters are xCP=[4.29±1.48(stat)±0.26(syst)]×10-3, yCP=[12.61±3.12(stat)±0.83(syst)]×10-3, Δx=[-0.77±0.93(stat)±0.28(syst)]×10-3, Δy=[3.01±1.92(stat)±0.26(syst)]×10-3. The results are complementary to and consistent with previous measurements. A combination with the recent LHCb analysis of D*+→D0(→KS0π+π-)π+ decays is reported

    Search for the rare decays W+→Ds+γW^+ \to D^+_s\gamma and Z→D0γZ \to D^0\gamma at LHCb

    Get PDF
    International audienceA search for the rare decays and is performed using proton-proton collision data collected by the LHCb experiment at a centre-of-mass energy of 13, corresponding to an integrated luminosity of 2.0. No significant signal is observed for either decay mode and upper limits on their branching fractions are set using and decays as normalization channels. The upper limits are and at 95% confidence level for the and decay modes, respectively. This is the first reported search for the decay, while the upper limit on the branching fraction improves upon the previous best limit

    Measurement of the D∗D^* longitudinal polarization in B0→D∗−τ+ΜτB^0 \to D^{* -}\tau^+\nu_{\tau} decays  

    No full text
    The longitudinal polarization fraction of the D∗D^* meson is measured in B0→D∗−τ+ΜτB^0 \to D^{* -}\tau^+\nu_{\tau} decays, where the τ\tau lepton decays to three charged pions and a neutrino, using proton-proton collision data collected by the LHCb experiment at center-of-mass energies of 7, 8 and 13 TeV and corresponding to an integrated luminosity of 5 fb−1^{-1}. The D∗D^* polarization fraction FLD∗F_L^{D^*} is measured in two q2q^2 regions, below and above 7 GeV2^2/c4^4, where q2q^2 is defined as the squared invariant mass of the τΜτ\tau\nu_{\tau} system. The FLD∗F_L^{D^*} values are measured to be 0.51±0.07±0.030.51 \pm 0.07 \pm 0.03 and 0.35±0.08±0.020.35 \pm 0.08 \pm 0.02 for the lower and higher q2q^2 regions, respectively. The first uncertainties are statistical and the second systematic. The average value over the whole q2q^2 range is: FLD∗=0.43±0.06±0.03.F_L^{D^*} = 0.43 \pm 0.06 \pm 0.03. These results are compatible with the Standard Model predictions.The longitudinal polarization fraction of the D∗D^{*} meson is measured in B0→D∗−τ+ΜτB^0\to D^{*-}\tau^{+}\nu_{\tau} decays, where the τ\tau lepton decays to three charged pions and a neutrino, using proton-proton collision data collected by the LHCb experiment at center-of-mass energies of 7, 8 and 13 TeV and corresponding to an integrated luminosity of 5 fb−1^{-1}. The D∗D^{*} polarization fraction FLD∗F_{L}^{D^{*}} is measured in two q2q^{2} regions, below and above 7 GeV2/c4^{2}/c^{4}, where q2q^{2} is defined as the squared invariant mass of the τΜτ\tau\nu_{\tau} system. The FLD∗F_{L}^{D^{*}} values are measured to be 0.51±0.07±0.030.51 \pm 0.07 \pm 0.03 and 0.35±0.08±0.020.35 \pm 0.08 \pm 0.02 for the lower and higher q2q^{2} regions, respectively. The first uncertainties are statistical and the second systematic. The average value over the whole q2q^{2} range is: FLD∗=0.43±0.06±0.03.F_{L}^{D^{*}} = 0.43 \pm 0.06 \pm 0.03. These results are compatible with the Standard Model predictions
    corecore