41 research outputs found

    Binding Specificities of the Telomere Phage ϕKO2 Prophage Repressor CB and Lytic Repressor Cro

    Get PDF
    Temperate bacteriophages possess a genetic switch which regulates the lytic and lysogenic cycle. The genomes of the temperate telomere phages N15, PY54, and ϕKO2 harbor a primary immunity region (immB) comprising genes for the prophage repressor (cI or cB), the lytic repressor (cro) and a putative antiterminator (q). The roles of these products are thought to be similar to those of the lambda proteins CI (CI prophage repressor), Cro (Cro repressor), and Q (antiterminator Q), respectively. Moreover, the gene order and the location of several operator sites in the prototype telomere phage N15 and in ϕKO2 are reminiscent of lambda-like phages. We determined binding sites of the ϕKO2 prophage repressor CB and lytic repressor Cro on the ϕKO2 genome in detail by electrophoretic mobility shift assay (EMSA) studies. Unexpectedly, ϕKO2 CB and Cro revealed different binding specificities. CB was bound to three OR operators in the intergenic region between cB and cro, two OL operators between cB and the replication gene repA and even to operators of N15. Cro bound exclusively to the 16 bp operator site OR3 upstream of the ϕKO2 prophage repressor gene. The ϕKO2 genes cB and cro are regulated by several strong promoters overlapping with the OR operators. The data suggest that Cro represses cB transcription but not its own synthesis, as already reported for PY54 Cro. Thus, not only PY54, but also phage ϕKO2 possesses a genetic switch that diverges significantly from the switch of lambda-like phages

    Genetic Organization of Acquired Antimicrobial Resistance Genes and Detection of Resistance-Mediating Mutations in a Gallibacterium anatis Isolate from a Calf Suffering from a Respiratory Tract Infection

    Get PDF
    Gallibacterium (G.) anatis isolates associated with respiratory diseases in calves and harboring acquired antimicrobial resistance genes have been described in Belgium. The aim of this study was to analyze the genetic organization of acquired resistance genes in the G. anatis isolate IMT49310 from a German calf suffering from a respiratory tract infection. The isolate was submitted to antimicrobial susceptibility testing, and a closed genome was obtained by a hybrid assembly of Illumina MiSeq short-reads and MinION long-reads. Isolate IMT49310 showed elevated MIC values for macrolides, aminoglycosides, florfenicol, tetracyclines, and trimethoprim/sulfamethoxazole. The acquired resistance genes catA1, floR, aadA1, aadB, aphA1, strA, tet(M), tet(B), erm(B), and sul2 were identified within three resistance gene regions in the genome, some of which were associated with IS elements, such as ISVsa5-like or IS15DII. Furthermore, nucleotide exchanges within the QRDRs of gyrA and parC, resulting in amino acid exchanges S83F and D87A in GyrA and S80I in ParC, were identified. Even if the role in the pathogenesis of respiratory tract infections in cattle needs to be further investigated, the identification of a G. anatis isolate with reduced susceptibility to regularly used antimicrobial agents in cases of fatal bovine respiratory tract infections is worrisome, and such isolates might also act as a reservoir for antimicrobial resistance genes

    High Binding Specificity of the PY54 Cro Lytic Repressor to a Single Operator Site

    Get PDF
    Temperate bacteriophages possess a molecular switch, which regulates the lytic and lysogenic growth. The genomes of the temperate telomere phages N15, PY54 and ɸKO2 harbor a primary immunity region (immB) comprising genes for the prophage repressor, the lytic repressor and a putative antiterminator. The roles of these products are thought to be similar to those of the lambda proteins CI, Cro and Q, respectively. Moreover, the gene order and the location of several operator sites in the prototype telomere phage N15 and in ɸKO2 are also reminiscent of lambda-like phages. By contrast, in silico analyses revealed the presence of only one operator (OR3) in PY54. The purified PY54 Cro protein was used for EMSA studies demonstrating that it exclusively binds to a 16-bp palindromic site (OR3) upstream of the prophage repressor gene. The OR3 operator sequences of PY54 and ɸKO2/N15 only differ by their peripheral base pairs, which are responsible for Cro specificity. PY54 cI and cro transcription is regulated by highly active promoters initiating the synthesis of a homogenious species of leaderless mRNA. The location of the PY54 Cro binding site and of the identified promoters suggests that the lytic repressor suppresses cI transcription but not its own synthesis. The results indicate an unexpected diversity of the growth regulation mechanisms in lambda-related phages

    Detection of VIM-1-producing Enterobacter cloacae and Salmonella enterica Serovars Infantis and Goldcoast at a breeding pig farm in Germany in 2017 and their molecular relationship to former VIM-1-producing S. Infantis Isolates in German livestock production

    Get PDF
    In 2011, VIM-1-producing Salmonella enterica serovar Infantis and Escherichia coli were isolated for the first time in four German livestock farms. In 2015/2016, highly related isolates were identified in German pig production. This raised the issue of potential reservoirs for these isolates, the relation of their mobile genetic elements, and potential links between the different affected farms/facilities. In a piglet-producing farm suspicious for being linked to some blaVIM-1 findings in Germany, fecal and environmental samples were examined for the presence of carbapenemase-producing Enterobacteriaceae and Salmonella spp. Newly discovered isolates were subjected to Illumina whole-genome sequencing (WGS) and S1 pulsed-field gel electrophoresis (PFGE) hybridization experiments. WGS data of these isolates were compared with those for the previously isolated VIM-1-producing Salmonella Infantis isolates from pigs and poultry. Among 103 samples, one Salmonella Goldcoast isolate, one Salmonella Infantis isolate, and one Enterobacter cloacae isolate carrying the blaVIM-1 gene were detected. Comparative WGS analysis revealed that the blaVIM-1 gene was part of a particular Tn21-like transposable element in all isolates. It was located on IncHI2 (ST1) plasmids of ∼290 to 300 kb with a backbone highly similar (98 to 100%) to that of reference pSE15-SA01028. SNP analysis revealed a close relationship of all VIM-1-positive S. Infantis isolates described since 2011. The findings of this study demonstrate that the occurrence of the blaVIM-1 gene in German livestock is restricted neither to a certain bacterial species nor to a certain Salmonella serovar but is linked to a particular Tn21-like transposable element located on transferable pSE15-SA01028-like IncHI2 (ST1) plasmids, being present in all of the investigated isolates from 2011 to 2017. IMPORTANCE: Carbapenems are considered one of few remaining treatment options against multidrug-resistant Gram-negative pathogens in human clinical settings. The occurrence of carbapenemase-producing Enterobacteriaceae in livestock and food is a major public health concern. Particularly the occurrence of VIM-1-producing Salmonella Infantis in livestock farms is worrisome, as this zoonotic pathogen is one of the main causes for human salmonellosis in Europe. Investigations on the epidemiology of those carbapenemase-producing isolates and associated mobile genetic elements through an in-depth molecular characterization are indispensable to understand the transmission of carbapenemase-producing Enterobacteriaceae along the food chain and between different populations to develop strategies to prevent their further spread

    Prevalence of mcr-1 in E. coli from Livestock and Food in Germany, 2010–2015

    Get PDF
    Since the first description of a plasmid-mediated colistin resistance gene (mcr-1) in November 2015 multiple reports of mcr-1 positive isolates indicate a worldwide spread of this newly discovered resistance gene in Enterobacteriaceae. Although the occurrence of mcr-1 positive isolates of livestock, food, environment and human origin is well documented only few systematic studies on the prevalence of mcr-1 are available yet. Here, comprehensive data on the prevalence of mcr-1 in German livestock and food isolates are presented. Over 10.600 E. coli isolates from the national monitoring on zoonotic agents from the years 2010–2015 were screened for phenotypic colistin resistance (MIC value >2 mg/l). Of those, 505 resistant isolates were screened with a newly developed TaqMan-based real-time PCR for the presence of the mcr-1 gene. In total 402 isolates (79.8% of colistin resistant isolates) harboured the mcr-1 gene. The prevalence was depending on the food production chain. The highest prevalence was detected in the turkey food chain (10.7%), followed by broilers (5.6%). A low prevalence was determined in pigs, veal calves and laying hens. The mcr-1 was not detected in beef cattle, beef and dairy products in all years investigated. In conclusion, TaqMan based real-time PCR provides a fast and accurate tool for detection of mcr-1 gene. The overall detection rate of 3.8% for mcr-1 among all E. coli isolates tested is due to high prevalence of mcr-1 in poultry production chains. More epidemiological studies of other European countries are urgently needed to assess German prevalence data

    RNASeq Based Transcriptional Profiling of Pseudomonas aeruginosa PA14 after Short- and Long-Term Anoxic Cultivation in Synthetic Cystic Fibrosis Sputum Medium

    Get PDF
    The opportunistic human pathogen Pseudomonas aeruginosa can thrive under microaerophilic to anaerobic conditions in the lungs of cystic fibrosis patients. RNASeq_{Seq} based comparative RNA profiling of the clinical isolate PA14 cultured in synthetic cystic fibrosis medium was performed after planktonic growth (OD600_{600} = 2.0; P), 30 min after shift to anaerobiosis (A-30) and after anaerobic biofilm growth for 96h (B-96) with the aim to reveal differentially regulated functions impacting on sustained anoxic biofilm formation as well as on tolerance towards different antibiotics. Most notably, functions involved in sulfur metabolism were found to be up-regulated in B-96 cells when compared to A-30 cells. Based on the transcriptome studies a set of transposon mutants were screened, which revealed novel functions involved in anoxic biofilm growth.In addition, these studies revealed a decreased and an increased abundance of the oprD and the mexCD-oprJ operon transcripts, respectively, in B-96 cells, which may explain their increased tolerance towards meropenem and to antibiotics that are expelled by the MexCD-OprD efflux pump. The OprI protein has been implicated as a target for cationic antimicrobial peptides, such as SMAP-29. The transcriptome and subsequent Northern-blot analyses showed that the abundance of the oprI transcript encoding the OprI protein is strongly decreased in B-96 cells. However, follow up studies revealed that the susceptibility of a constructed PA14ΔoprI mutant towards SMAP-29 was indistinguishable from the parental wild-type strain, which questions OprI as a target for this antimicrobial peptide in strain PA14

    The efficacy of isolated bacteriophages from pig farms against ESBL/AmpC- producing Escherichia coli from pig and Turkey farms

    Get PDF
    Extended-spectrum β-lactamases (ESBLs) and AmpC β-lactamases are plasmid (but also chromosomally) encoded enzymes found in Enterobacteriaceae, determining resistance to a variety of important antibiotics including penicillins, cephalosporins, and monobactams. In recent decades, the prevalence of ESBL /AmpC-producing bacteria has increased rapidly across the world. Here, we evaluate the potential use of bacteriophages in terms of a reduction of antibiotic-resistant bacteria in healthy animals. The aim of our studies was to isolate bacteriophages capable of destroying ESBL/AmpC-producing Escherichia coli isolated from livestock habitats. The efficacy of isolated phages against ESBL/AmpC E. coli strains varies, but creation of a phage cocktail with broad activity spectrum is possible. This may indicate that the role of phages may not be limited to phage therapy, but bacterial viruses may also be applied against spread of bacteria with antibiotic resistance genes in the environment. We also addressed the hypothesis, that phages, effective for therapeutic purposes may be isolated from distant places and even from different environments other than the actual location of the targeted bacteria. This may be beneficial for practical purposes, as the construction of effective phage preparations does not require access to disease outbreaks

    Retrospective Analysis of Bacterial Cultures Sampled in German Chicken- Fattening Farms During the Years 2011–2012 Revealed Additional VIM-1 Carbapenemase-Producing Escherichia coli and a Serologically Rough Salmonella enterica Serovar Infantis

    Get PDF
    Carbapenems are last-resort antibiotics used in human medicine. The increased detection of carbapenem-resistant Enterobacteriaceae (CRE) is therefore worrying. In 2011 we reported the first livestock-associated VIM-1-producing Salmonella (S.) enterica serovar Infantis (R3) isolate from dust, sampled in a German chicken fattening farm. Due to this observation we retrospectively investigated more than 536 stored bacterial cultures, isolated from 45 chicken fattening farms during the years 2011 and 2012. After a non-selective overnight incubation, the bacteria were transferred to selective media. Escherichia (E.) coli and Salmonella growing on these media were further investigated, including antibiotic susceptibility testing, carbapenemase gene screening and whole genome sequencing (WGS). In total, four CRE were found in three out of 45 investigated farms: Besides R3, one additional Salmonella (G-336-1a) as well as two E. coli isolates (G-336-2, G-268-2). All but G-268-2 harbored the blaVIM-1 gene. Salmonella isolates R3 and G-336-1 were closely related although derived from two different farms. All three blaVIM-1-encoding isolates possessed identical plasmids and the blaVIM-1- containing transposon showed mobility at least in vitro. In isolate G-268-2, the AmpC beta-lactamase gene blaCMY-2 but no known carbapenemase gene was identified. However, a transfer of the phenotypic resistance was possible. Furthermore, G-268-2 contained the mcr-1 gene, combining phenotypical carbapenem- as well as colistin resistance in one isolate. Carbapenem-resistant Enterobacteriaceae have been found in three out of 45 investigated chicken flocks. This finding is alarming and emphasizes the importance of intervention strategies to contain the environmental spread of resistant bacteria in animals and humans

    Assessment of the Mobilizable Vector Plasmids pSUP202 and pSUP404.2 as Genetic Tools for the Predatory Bacterium Bdellovibrio bacteriovorus

    Get PDF
    Bdellovibrio and like organisms (BALOs) form the group of predatory bacteria which require Gram-negative bacteria as prey. Genetic studies with Bdellovibrio bacteriovorus can be performed with vectors which are introduced into the predator via conjugation. The usefulness of the two vectors pSUP202 and pSUP404.2 as genetic tools were assessed. Both vectors were transferable into B. bacteriovorus by conjugative matings with an Escherichia coli K12 strain as donor. The transfer frequency was higher for vector pSUP404.2 (approx. 10−1–10−4) as for pSUP202 (approx. 10−5–10−6). Vector pSUP202 with a pMB1 origin is unstable in the predatory bacterium, whereas pSUP404.2 is stably maintained in the absence of selective antibiotics. pSUP404.2 harbors two plasmid replicons, the p15A ori and the RSF1010 replication region The copy number of pSUP404.2 was determined by quantitative PCR in B. bacteriovorus and averages seven copies per genome. pSUP404.2 harbors two resistance genes (chloramphenicol and kanamycin) which can be used for cloning either by selection for transconjugants or by insertional inactivation
    corecore