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Carbapenems are last-resort antibiotics used in human medicine. The increased

detection of carbapenem-resistant Enterobacteriaceae (CRE) is therefore worrying. In

2011 we reported the first livestock-associated VIM-1-producing Salmonella (S.) enterica

serovar Infantis (R3) isolate from dust, sampled in a German chicken fattening farm.

Due to this observation we retrospectively investigated more than 536 stored bacterial

cultures, isolated from 45 chicken fattening farms during the years 2011 and 2012.

After a non-selective overnight incubation, the bacteria were transferred to selective

media. Escherichia (E.) coli and Salmonella growing on these media were further

investigated, including antibiotic susceptibility testing, carbapenemase gene screening

and whole genome sequencing (WGS). In total, four CRE were found in three out of

45 investigated farms: Besides R3, one additional Salmonella (G-336-1a) as well as

two E. coli isolates (G-336-2, G-268-2). All but G-268-2 harbored the blaVIM-1 gene.

Salmonella isolates R3 and G-336-1 were closely related although derived from two

different farms. All three blaVIM-1-encoding isolates possessed identical plasmids and

the blaVIM-1- containing transposon showed mobility at least in vitro. In isolate G-268-2,

the AmpC beta-lactamase gene blaCMY-2 but no known carbapenemase gene was

identified. However, a transfer of the phenotypic resistance was possible. Furthermore,

G-268-2 contained the mcr-1 gene, combining phenotypical carbapenem- as well as

colistin resistance in one isolate. Carbapenem-resistant Enterobacteriaceae have been
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found in three out of 45 investigated chicken flocks. This finding is alarming and

emphasizes the importance of intervention strategies to contain the environmental spread

of resistant bacteria in animals and humans.

Keywords: antimicrobial resistance, plasmids, livestock, carbapenems, VIM-1 producing Enterobacteriaceae,

Germany, broiler

INTRODUCTION

Carbapenem resistance increased in many countries during
the last years, causing serious problems in the public health
system (Wilson, 2017). As carbapenems serve as one of the
last remaining options for the treatment of serious infections
caused by multidrug-resistant Gram-negative bacteria (e.g.,
Enterobacteriaceae, Acinetobacter baumannii, Pseudomonas
aeruginosa), the recent situation is alarming. In terms of Gram-
negative bacteria, mainly the expression of carbapenemases
leads to a decreased carbapenem-susceptibility. Most frequently
detected genes are blaVIM, blaIMP, blaNDM (class B ß-lactamases),
blaKPC (class A β-lactamases) and blaOXA−48−like (class D
β-lactamases) (Nordmann et al., 2012). Their location on mobile
genetic elements though contributes to a successful spread
of these resistance genes (Nordmann et al., 2012; Carattoli,
2013). Within the last couple of years, the occurrence of
carbapenemase-producing bacteria relocated from clinical
settings. Carbapenemase-producing bacteria have been isolated
from the environment (Walsh et al., 2011; Zurfluh et al.,
2013), wild-birds (Fischer et al., 2013b), seafood (Rubin et al.,
2014; Morrison and Rubin, 2015; Roschanski et al., 2017b),
companion- and food-producing animals all over the world
(Stolle et al., 2013; Mollenkopf et al., 2016; Ewers et al., 2017;
Fischer et al., 2017; He et al., 2017). In terms of food-producing
animals, beside pigs and cattle another focus was chicken and
chicken meat. In 2011, the first VIM-1 producing Salmonella
enterica subsp. enterica serovar Infantis (S. Infantis)—isolate
R3—was isolated on a German chicken fattening farm (Fischer
et al., 2013a). This isolate was closely related to other S. Infantis
isolates detected in tree pig fattening farms in the same year
(Fischer et al., 2017), based on identical macrorestriction
patterns and the presence of a blaVIM-1-carrying IncHI2 plasmid
of 300 kb. Therein, the carbapenemase gene was located within
a class 1 integron embedded in a Tn21 homolog (Falgenhauer
et al., 2017). Since 2015, additional publications described the
finding of carbapenemase-producing bacteria in chicken or retail
chicken meat. Carbapenemase-producing Enterobacteriaceae
(CPE) were detected in retail chicken meat and in broiler
farms in Egypt (Abdallah et al., 2015), and quite recently, the
prevalence of NDM and Mcr-1 in Chinese poultry production
as well as VIM-positive Pseudomonas species in Chinese chicken
and their surrounding has been described (Wang et al., 2017;
Zhang et al., 2017). To follow-up on the study of Fischer et al.
(Fischer et al., 2013a), 536 stored bacterial cultures, isolated
from 45 chicken-fattening farms as well as 125 stored single
colony cultures derived from the previously blaVIM-1-positive
chicken farm 1, were retrospectively investigated for the

presence of carbapenem-resistant E. coli as well as Salmonella
isolates.

MATERIALS AND METHODS

Bacterial Cultures and Screening for
Carbapenem-Resistant Isolates
Primary Mixed Bacterial Cultures
In total, 536 primary bacterial cultures, isolated from pooled
feces, pooled dust as well as boot swab samples were
retrospectively investigated. The samples were initially taken
in terms of the first period of the national research project
RESET (www.reset-verbund.de), carried out during the years
2011–2013, and focused on screening for ESBL and AmpC-
producing Enterobacteriaceae in different habitats (Laube et al.,
2013; Hering et al., 2016). Therein, an overall number of 45
chicken fattening farms distributed throughout Germany have
been investigated. Briefly, the samples were taken from each
farm, incubated non-selectively in LB broth (Luria/ Miller),
(Carl Roth, Karlsruhe, Germany), followed by a selective
cultivation on MacConkey agar plates containing 1 mg/L
cefotaxime (293 cultures – 55%) or Endo-agar containing
2 mg/L enrofloxacin (243 cultures – 45%). Mixed sets of
bacteria, able to grow on these plates (primary cultures), were
taken from the plates and stored in CryobankTM (MAST
Diagnostica, Reinfeld, Germany) at −80◦C (Laube et al.,
2013; Hering et al., 2016). For our retrospective analyses, the
stored bacteria were re-cultured non-selectively in LB broth
at 37◦C, overnight. Each culture was spread on selective
MacConkey agar plates (MacConkey agar No 3; OXOID,
Hampshire, UK) containing 0.125 mg/L meropenem, (Sigma
Aldrich, Seelze, Germany). E. coli and Salmonella colonies were
isolated and species were confirmed using MALDI-TOF mass-
spectrometry (MALDI Microflex R©LT and Biotyper R©database,
Bruker Daltronics, Bremen, Germany). Per sample and species,
one colony was picked and subsequently spread on chromIDTM-
CARBA agar plates (bioMérieux, Nurtingen, Germany). Thereon
grown colonies (one per sample and species) were further
investigated for the presence of carbapenemase genes (blaVIM,
blaKPC, blaNDM, blaOXA-48, and blaGES) using real-time PCR
(Roschanski et al., 2017a). The presence of blaIMP was checked
in a conventional PCR format (van der Zee et al., 2014).

Single Colonies Derived From Chicken-Farm 1
In a separate investigation, performed in the department of
biological safety of the Federal Institute for Risk Assessment,
120 stored single colony cultures (111 E. coli, 5 Pseudomonas, 4
Acinetobacter), derived from the previously VIM-positive tested
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chicken farm 1 (S. Infantis R3), were screened for the presence
of further blaVIM-1-encoding isolates. The cultures derived from
one of the seven investigated chicken fattening farms which were
sampled in terms of a longitudinal study (three samplings per
fattening period) conducted by the FU Berlin (Laube et al., 2013).

The cultures were taken from the −80◦C stock and non-
selectively re-cultured. On the following day the overnight
cultures were transferred to LB broth containing 1 mg/L
imipenem (1:500). In case of bacterial growth, cultures were
diluted 1:10 and used as template for amplification of the
blaVIM-1 gene by PCR. Cultures tested positive by PCR were
subsequently spread on selective agar plates for single colony
isolation and their blaVIM-1 confirmation by PCR as previously
described (Fischer et al., 2017).

Antimicrobial Susceptibility Testing and
Blue-Carba Assay
Minimal inhibitory concentrations for the wildtypes as well
as the transformants were determined by using the VITEK-
2 R© compact system and the AST-card N248 (bioMérieux,
Nuertingen, Germany). The Blue-Carba assay for confirmation of
carbapenemase activity was performed in two technical replicates
as previously described (Pires et al., 2013).

Genotypic Investigation of Wildtype and
Transformant Isolates
Plasmids were isolated using the NucleoBond Xtra Midi
kit (Macherey-Nagel, Dueren, Germany) and transferred into
E. coli NEB R©10-beta or NEB R©5-alpha (NEB, Frankfurt a. M.,
Germany) by electroporation (2.5 kV). WGS was performed
for the wildtype strains (Salmonella R3 and G-336-1a; E. coli
G-336-2 and G-268-2) as well as the G-336-1a- and G-336-
2-transformants TG-336-1a, TG-336-2_VIM, TG-336-2_CMY+VIM,
TG-336-2_CMY using MiSeq (Illumina) (Borowiak et al., 2017). In
addition, the E. coli recipient strainNEB R©10-beta was sequenced.
The raw-data were de novo assembled using SPAdes (Bankevich
et al., 2012). An additional assembly was performed for G-268-2
by A5-miseq (v. 0.0.9 beta; default parameters) using trimmed
raw reads (Trimmomatic: v. 0.0.9; default parameters except
maxinfo 15:0.5) (Bolger et al., 2014; Coil et al., 2015). Resistance
genes, virulence genes, plasmid incompatibility groups as well
as multilocus sequence types were identified using the Web-
tools ResFinder (Zankari et al., 2012), PlasmidFinder (Carattoli
et al., 2014) and MLST 1.8 (Larsen et al., 2012). In addition,
the Resistance Gene Identifier (RGI) was used (Jia et al., 2017).
The genetic relationship of the two S. Infantis isolates R3 and G-
336-1a was determined by using the CSI Phylogeny-1.4 Server
(Kaas et al., 2014). Therefore the raw reads were uploaded and
mapped against a S. Infantis reference sequence (LN649235.1),
(Olasz et al., 2015). Parameters were set as follows: Minimum
depth at SNP position: 10, relative depth at SNP position: 10,
minimum distance between SNPs (prune): 10, minimum SNP
quality: 30, minimum read mapping quality: 25 as well as
minimum Z-score: 1.96.

A prediction of Inc RNA folding was performed using
the RNAfold WebServer (http://rna.tbi.univie.ac.at//cgi-bin/
RNAWebSuite/RNAfold.cgi) (Gruber et al., 2008). Furthermore,
a subsequent plasmid comparison was performed using the

BLAST Ring Image Generator (BRIG) (Alikhan et al., 2011).
For this purpose contigs containing plasmid sequences were
plotted against two already published blaVIM-1 containing
IncHI2-plasmid sequences derived from a S. Infantis as well as
an E. coli isolated on a German pig fattening farm (pRH-R27,
LN555650.1 and pRH-R178 HG530658.1) (Falgenhauer et al.,
2017). Whole genome data of all isolates have been deposited in
the European Nucleotide Archive (https://www.ebi.ac.uk/ena) of
the European Bioinformatics Institute (EMBL-EBI); accession
numbers R3 (ERS2154041), G-336-1a (ERS2101552), G-336-2
(ERS2101553), G-268-2 (1969-10-8; ERS2101554), NEB R©10-
beta (ERS2101551), TG-336-1a (FU11995; ERS2101550),
TG-336-2_VIM (FU12739; ERS2101547),TG-336-2_CMY+VIM

(FU12738; ERS2101548), TG-336-2_CMY (FU11994; ERS2101549).
The phenotypic carbapenem resistance of G-268-2 as well

as its transformant TG-268-2 was further characterized by an
additional screening for the presence of the outer-membrane
protein genes ompC and ompF. Therefore, the whole genome
reads were mapped against respective E. coli K-12 MG1655
(NC_000913.3) reference sequences. In addition, a PCR-based
screening was performed, using the primer pairs Ec_OmpC-
fwd – ATGAAAGTTAAAGTACTGTCCCTCC, Ec_OmpC-rev.
– TTAGAACTGGTAAACCAGACCCA (1,150 bp), Ec_OmpF-
fwd. – ATGATGAAGCGCAATATTCTGG, Ec_OmpF-rev. –
TTAGAACTGGTAAACGATACCCACA (1,190 bp) as well as
primers described by Lartigue et al. (2007).

Classical Bacterial Strain Typing
Classification of the E. coli isolates into one of the eight described
phylogenetic groups was done in accordance to the protocol of
Clermont et al. (2013). Serotyping of Salmonella isolates was
performed in the German National Reference Laboratory for
the Analysis and Testing of Zoonoses (NRL Salmonella - BfR,
Berlin) according to the White-Kauffmann-Le Minor scheme
(Grimont andWeill, 2007). Genetic relatedness of the Salmonella
isolates was analyzed using XbaI-restriction of bacterial DNA
and subsequent pulsed-field gel electrophoresis (PFGE) (Ribot
et al., 2006). PFGE was conducted using the CHEF-DR III system
(Bio-Rad Laboratories GmbH, Munich, Germany) using a 1.1%
agarose gel (Biozyme LE GP agarose; Biozym Scientific GmbH,
Hessisch Oldendorf, Germany). The following conditions were
used: Initial switch time 5 s, final switch time 50 s at a gradient of
5.6 V/cm and an included angle of 120V. The run time was 21 h
at a system temperature of 14◦C. For plasmid characterization,
S1-nuclease restriction and PFGE (Guerra et al., 2004) was
performed using the following running conditions: 1-25 s, 17 h,
6 V/cm, 120V.

RESULTS

Occurrence of Carbapenem-Resistant
Isolates Within German Chicken Fattening
Farms
In 2011 the first VIM-1-producing S. Infantis (R3) was isolated
from dust sampled on a German chicken fattening farm. The
primary mixed bacterial culture from this chicken farm was
included in this study and served as an internal identification
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control for the applied isolation procedure of CPE. Besides
R3, one additional Salmonella isolate, serologically typed as
subspecies I (rough phenotype, G-336-1a) as well as two E. coli
isolates (G-336-2, G-268-2) were isolated from the selective
agar plates. The real-time PCR-based screening of the new
isolates indicated the presence of the blaVIM-1 gene in G-336-
1a and G-336-2. Both of them were found in one dust sample
from a chicken fattening farm in South Germany. Apparently,
there was no regional connection to the previously described
chicken fattening farm (isolate R3) which was located in the
eastern part of Germany. G-268-2 was isolated from a boot
swab sample originated from a third chicken fattening farm
located in East Germany. For this E. coli isolate none of the
six investigated carbapenemase genes (blaVIM, blaKPC, blaNDM,
blaOXA−48, blaGES, and blaIMP) was detected.

Detailed Characterization of blaVIM-1
Containing Salmonella and E. coli Isolates
An overview of the whole genome results is provided in Table 1.
These data confirm the relatedness of both Salmonella isolates
(R3 andG-336-1). They belonged to themultilocus sequence type
ST32 and both, PFGE as well as SNP analysis, showed only small
differences of 2 bands (data not shown) and 8 SNPs, respectively.
These data reveal that G-336-1 just as R3, genotypically belongs
to the serovar Infantis. The blaVIM-1-encoding plasmids (IncHI2;
300 kb) derived from the two S. Infantis isolates (R3, G-336-
1a) as well as the E. coli (G-336-2) were compared with the
IncHI2 plasmid sequences of E. coli R178 as well as S. Infantis
R27, both isolated in a German pig-fattening farm (Falgenhauer
et al., 2017). An identity of 100% was detected between the
plasmids of R3, G-336-1a and R27 (Salmonella) as well as

the blaVIM-1 containing plasmid of E. coli G-336-2 (Figure 1).
In all four plasmids the blaVIM-1 gene was part of a class
1 integron accompanied by the genes aacA4 and aadA1 in
its variable region. As described previously, the integron was
inserted in a Tn21 homolog (Falgenhauer et al., 2017). On the
same plasmid, the AmpC gene blaACC-1 was detected. S1-PFGE
indicated that E. coli isolate G-336-2 (sequence type ST131)
contained two additional plasmids, one of them an IncI1 plasmid,
carrying the AmpC gene blaCMY-2 (Figure 2). Proofed by WGS,
it was possible to show that in course of in vitro cultivation
and transformation experiments, one E. coli transformant was
received, which contained the blaVIM-1-encoding transposon
integrated into the pilU gene of the blaCMY-2-encoding IncI1
plasmid (Figure 2). This indicates that at least in vitro the
transposon is highly mobile and self-transmissive.

The Carbapenem Resistance of the E. coli

Isolate G-268-2 Remains Unclear
In case of the second E. coli isolate G-268-2 (ST-354) neither
ResFinder (Zankari et al., 2012) nor RGI (Jia et al., 2017)
indicated the presence of a known carbapenemase gene.
Data assembly using two different algorithms (SPAdes and
A5-miseq) provided identical results. Besides several other
antibiotic resistance genes, this isolate contained the colistin
resistance gene mcr-1 encoded on an IncX4 plasmid (Table 1).
Resistance to colistin (MIC = 8mg/L) was confirmed for G-
268-2 and its transformant TG-268-2_mcr-1 (Table 2). Moreover,
the increased MIC for meropenem (4 mg/L) and imipenem
(MIC = 8 mg/L) in another G-268-2 transformant indicated a
transferrable carbapenem resistance. While the plasmid-encoded
colistin resistance was transferred separately (IncX4 plasmid),

TABLE 1 | Characteristics of carbapenem-resistant E. coli and S. Infantis isolates including their respective transformants derived from whole genome data analyses.

Wildtype-isolate/

transformants

Farm no. Species [MLST] Resistance genes Plasmids [pMLST]

R3* 1 Salmonella Infantis

[ST-32]

aac(6′)Ib-cr-like, aacA4-like, aadA1, blaACC-1, blaVIM-1,

catA1-like, ere(A)-like, strA, strB, sul1-like
IncHI2 [ST-1]

G-336-1a 78 Salmonella subspecies I

[ST-32]

aac(6′)Ib-cr-like, aacA4-like, aadA1, blaACC-1, blaVIM-1,

catA1-like, strA, strB, sul1-like
IncHI2 [ST-1]

TG-336-1a – E. coli
[ST-1060]

aac(6′)Ib-cr-like, aacA4-like, aadA1, blaACC-1, blaVIM-1,

catA1-like, strA, strB, sul1-like
IncHI2 [ST-1]

G-336-2 78 E. coli
[ST-131]

aac(6′)Ib-cr-like, aacA4-like, aadA1, blaACC-1, blaCMY-2,

blaVIM-1, catA1-like, strA, strB, sul1-like
IncI1 [ST-12], IncHI2 [ST-1], IncF

[F18:A6:B1]

TG-336-2_VIM – E. coli
[ST-1060]

aac(6′)Ib-cr-like, aacA4-like, aadA1, blaACC-1, blaVIM-1,

catA1-like, strA, strB, sul1-like
IncHI2 [ST-1]

TG-336-2_VIM+CMY – E. coli
[ST-1060]

aac(6′)Ib-cr-like, aacA4-like, aadA1, blaCMY-2, blaVIM-1,

catA1-like, sul1,
IncI1 [ST-12]

TG336-2_CMY – E. coli
[ST-1060]

blaCMY-2 IncI1 [ST-12]

G-268-2 54 E. coli
[ST-354]

aadA1, aadA2, aph(3′)-Ia-like, blaCMY-2, blaTEM-1B,
cmlA1-like, dfrA17, dfrA8, mcr-1, strA, strB, sul2, sul3, tet(B)

ColRNAI, IncX1, p0111, IncX4,

IncQ1, IncB/O/K/Z, IncF [F-:A1:B1]

RECIPIENT

NEB10-beta E. coli
[ST-1060]

None None

*Previously identified by Fischer et al. (2013a); carbapenemase genes in bold print.
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FIGURE 1 | Circular visualization and comparison of blaVIM-1-carrying IncHI2 plasmid sequences from S. Infantis as well as E. coli isolates derived from German

chicken- as well as pig fattening farms and their transformants using BRIG. WT, wildtype; T, transformed E. coli NEB10®-beta.

the reduced carbapenem susceptibility was detected in the
transformant containing the AmpC-β-lactamase encoding gene
blaCMY-2 located on an IncB/O/K/Z-plasmid (Table 2). A
sequence comparison of the 83,592 kb contig containing the
blaCMY-2 gene of G-268-2 with available plasmid sequences in the
GenBank database exhibited 99.98% nucleotide sequence identity
(97.3% coverage) to the IncK2 plasmid pDV45 (KR905384) from
an E. coli isolate from poultry meat (Seiffert et al., 2017). A minor
difference was observed in the organization within the shufflon
region of pilV.

The blaCMY-2 gene itself was located within a mobile genetic
element consisting of ISEcp1 – blaCMY-2 – blc and sugE1 as
described by Seiffert et al. (2017).

As previously the correlation between carbapenem resistance
and the combination of elevated CMY-2-production and porin
deficiency has been shown (Goessens et al., 2013; van Boxtel
et al., 2017), the whole genome data of the G-268-2 wildtype
isolate were additionally checked for mutations in associated
regions. Neither the blaCMY-2 gene nor its promotor region
showed any kind of modification. However, the average read
coverage of the blaCMY-2 containing contig was 8.5-fold
higher than the coverage of chromosomal contigs. Analysis
of the plasmid copy number controlling antisense incRNAI
upstream of repA showed a nucleotide substitution comparing
to the incRNAI of plasmid pDV45 (KR905384) (Seiffert et al.,
2017). Analysis by RNA folding prediction software (RNAfold
WebServer) indicated that this nucleotide substitution might
have an impact on the folding structure of the antisense incRNA
(Supplementary Figure 1).

Mapping of the whole genome reads of G-268-2 against the
E. coli K12 porin genes ompF as well as ompC exhibited a
deletion of 19 nucleotides at nucleotide position 249 in the
ompC gene, resulting in a frameshift and a premature stop
codon at nucleotide position 285. OmpF showed 48 silent
nucleotide substitutions and 22 nucleotide substitutions leading
to amino acid substitutions and exhibited a deletion of 15
nucleotides in comparison to the ompF gene of E. coli K-
12 MG1655 (NC_000913.3). Subsequently performed PCR and
Sanger sequencing of the ompF- and ompC-products supported
this observation in both genes. As a control, the mapping of
the whole genome reads of the recipient strain NEB10 R©-beta
against both K12 omp-genes was performed and both of them
were unaltered according to the reference. In contrast to G-268-
2, 100% accordance to the ompF and ompC reference sequences
(E. coli K12 MG1655) was detected for the transformant
TG-268-2. Moreover, the additionally performed Blue-Carba assay
clearly indicated imipenem-hydrolyzing activity in case of the
investigated wild-type isolate G-268-2 as well as its transformant
TG-268-2_CMY-2 (Supplementary Figure 2).

Investigation of Additional Isolates Derived
From the Initially VIM-1-Positive Tested
Chicken Farm 1 Did Not Possess Additional
Carbapenemase-Producing Isolates
The retrospective analysis of 125 bacterial isolates derived
from three different samplings in chicken farm 1, revealed no
additional VIM-1-producing isolates. Therefore, the S. Infantis
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FIGURE 2 | Plasmid content of donor strains and transformants (S1-PFGE).

Information about respective replicon types and the resistance gene

localization derived from the whole genome data analysis. WT, wildtype; T,

transformed E. coli NEB10®-beta.

(R3) containing dust sample, which was included in analysis as
a positive control remained the only blaVIM-1 positive sample in
the investigated stable.

DISCUSSION

Although the here described study is based on a retrospective
investigation of bacterial isolates sampled in the years 2011
and 2012, the finding of additional carbapenemase-producing
Enterobacteriaceae within German chicken farms is worrying.
Aware that in the same timeframe also blaVIM-1 positive E. coli
and/or S. Infantis have been isolated from three German pig
fattening farms (Fischer et al., 2017), it becomes obvious that
the entry of carbapenemase-producing bacteria into livestock
farms got on the way some years ago. Although three out
of 45 chicken fattening farms (6.6%), harboring carbapenem-
resistant bacteria have been identified in 2011/12 it has to be
considered that this study was merely based on pooled feces,
boot swabs as well as dust samples. Therefore, the received
results provide just a brief overview of the situation within the
investigated years and as a previously performed reinvestigation
on a VIM-1-positive pig-farm has shown, changes within the
resistance situation could occur over the years (Roschanski et al.,
2016). However, newer publications indicate that the trend of
finding carbapenemase-producing bacteria in livestock as well
as food did not stop. Three recently published manuscripts
described the finding of additional VIM-1-positive isolates in
Germany: E. coli derived from the colon contents of slaughter
pigs (Irrgang et al., 2017), as well as two S. Infantis isolated
from minced pork meat and a sick piglet (Borowiak et al., 2017).
All of the—so far—in Germany detected blaVIM-1 encoding

livestock associated Salmonella isolates belonged to sequence
type ST32 and possessed a highly related plasmid (size 300kb,
Figure 1). The latter S. Infantis, isolated in 2015 and 2016,
showed a major homology to the previously detected S. Infantis
(ST32) isolates R25 and R27 (pig farms) as well as R3 and
G-336-1a (chicken farms). Therefore, the here described data
as well as previous findings within the pig-production chain
suggested a broad circularization in livestock animals (pig- as
well as poultry). As in Germany the treatment of livestock
with carbapenems is not licensed, a co-selection process over
the years seemed to be most likely to explain the consistent
re-occurrence of highly similar isolates or plasmids over the
years. Moreover an additional report depicted the finding of
a blaVIM-1 positive E. coli from a venus clam derived from
a Berlin retail market (Roschanski et al., 2017b). However,
compared to the E. coli isolates derived from livestock in
this case neither a strain- nor a plasmid homology has been
detected.

Though, not only in Germany an increased finding of
carbapenemase producers in livestock or food has been
described. Klebsiella containing blaNDM have been detected in
Egypt chicken retail meat and 35% of investigated Egyptian
broilers were carrying NDM-, KPC- and or OXA-48- producing
Klebsiella pneumoniae (Hamza et al., 2016). In 2017, the
number of reports was even higher: VIM-positive Pseudomonas
species were isolated from chicken and their surroundings in
China (Zhang et al., 2017). Moreover, in China blaNDM−5

positive K. pneumoniae have been detected in dairy cows,
while blaNDM-producing E. coli have been identified in piglets
housed in India (Pruthvishree et al., 2017). Furthermore, in the
USA blaIMP−27 containing Enterobacteriaceae were recovered
from the environment of a swine farrow-to-finish operation
(Mollenkopf et al., 2016). This increase within the last 6 years
is alarming and the development of intervention strategies are
urgently needed to curtail a further spread of these bacteria.
However, beside the bacteria themselves also mobile genetic
elements like plasmids or transposons play an important role
for the spread of carbapenemase genes. Like here described,
farm 78 harbored an E. coli as well as a S. Infantis (serological
typed as S. subspecies I with a rough phenotype), carrying the
ca. 300 bp IncHI2 plasmid encoding the blaVIM-1 gene which
was previously described for different S. Infantis isolates (Fischer
et al., 2013a; Borowiak et al., 2017; Falgenhauer et al., 2017).
Moreover, our in-vitro experiments demonstrated that the Tn21-
like transposon harboring the blaVIM-1 gene was able to change
its localization from the ca. 300 kb IncHI2 plasmid to a much
smaller (ca. 100 kb) IncI1 plasmid. If this event happens in the
farm surrounding, it might contribute to the spread of this
carbapenemase gene even more efficiently. The exclusive finding
of the VIM-1-producing isolates in dust samples of the two
farms might be due to the high survival rates of Salmonella
species in dust or dried manure. In 2015, viable Salmonella
were detected for up to 291 days in manure dust with 5%
moisture (Oni et al., 2015). The fact that the blaVIM-1-containing
isolates did not spread throughout the 2011 and 2012 investigated
stables can be explained when the antimicrobial treatment of
the two respective flocks is taken into account: While in farm
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1 the animals remained untreated during the whole fattening
period, in farm 78 an oral treatment with colistin-sulfate was
performed for 4 days. As in both cases, no selection pressure
was present to favor the spread of the carbapenemase gene-
carrying plasmid; this might be a possible explanation for the rare
finding of positive tested isolates. However, as the survival rate of
Salmonella seemed to be pretty high within manure dust (Oni
et al., 2015), follow-up investigations of the respective stables
would have been desirable.

In addition, the presence of a transferable carbapenem
resistance has been shown for the E. coli isolate G-268-2 and
the assumed presence of a carbapenemase was supported by the
Blue-Carba assay (Pires et al., 2013), indicating an imipenem-
hydrolyzing activity (Supplementary Figure 2), however, no
known carbapenemase gene has been detected within the whole
genome data. However, Mammeri et al. reported a higher overall
catalytic activity of CMY-2 for imipenem compared to the ones
of other pAmpCs (Mammeri et al., 2010). Moreover, several
publications depicted the combination of elevated blaCMY-2
expression caused by an increased plasmid copy number in
combination with the lack of the outer membrane proteins
OmpC and OmpF as a main reason for detected carbapenem
resistance without the presence of a carbapenemase gene in E. coli
isolates (Chia et al., 2009; Mammeri et al., 2010; Goessens et al.,
2013; van Boxtel et al., 2017). In 2012 Kurpiel et al. reported that
point mutations in the inc antisense RNA gene can be associated
with an increased plasmid copy number and subsequently
higher expression of blaCMY-2 (Kurpiel and Hanson, 2012).
The observed nucleotide substitution in the inc RNA gene of
plasmid pG-268-2_CMY-2, however, might be associated with
a change in the RNA folding of the Inc antisense RNA and
hence led to an increased copy number of this plasmid due
to inhibited pseudoknot formation (Supplementary Figure 1).
Additional studies will be necessary to check this hypothesis
in-situ.

Regarding the outer membrane composition, a loss of OmpC
was found in isolate G-268-2, while the amount of mutations
within the ompF gene sequence in the same way suggested a
malfunctioned outer membrane protein F.

However, as mentioned previously, the phenotypic
carbapenem resistance of G-268-2 (MICIMI = ≥ 16 mg/L;
MICMEM = 8 mg/L) was transferrable to the E. coli recipient
strain NEB10 R©-beta (MICIMI = 8 mg/L; MICMEM = 4 mg/L)
and the ompF as well as ompC sequence data of the transformant
strain (TG-268-2) showed 100% accordance to the reference
sequences of E. coli K12. Furthermore, the G-268-2 wildtype
and its transformant have shown the ability to hydrolyze
imipenem in the Blue-Carba assay. Due to the fact that on
the one hand site TG-268-2 did not possess ompC as well
as ompF mutations and in addition the results of the Blue-
Carba assay showed its ability to hydrolyze imipenem, the
final explanation for the detected carbapenem resistance of
the E. coli isolate G-268-2 remains unclear. Further analyses
addressing the question if an overexpression of CMY-2 or
the occurrence of a new carbapenemase gene might have
contributed this observation have to be checked in the
future.
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Taken together, the knowledge that carbapenem-resistant
Salmonella as well as E. coli isolates can be found within
German livestock-farms is alarming and it becomes even worse
when these isolates acquired plasmids containing the colistin
resistance gene mcr-1. Once more, it depicts the importance of
comprehensive as well as harmonized monitoring programs in
Germany as well as abroad. Beyond this, the implementation of
proper intervention strategies to prevent a further dissemination
of multidrug-resistant bacteria as well as the spread of their
mobile genetic elements within and between animals and
humans are urgently needed.
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Supplementary Figure 1 | (A) Sequence alignment of the incRNAI of IncB (I),

IncK2-pDV45 (II) and pG-268-2 (III). The IncB incRNAI reference sequence derived

from Siemering et al. (1993), the IncK2-pDV45 incRNAI reference sequence from

Seiffert et al. (2017). (B) Predicted RNA folding of the incRNAI of IncB (I),

IncK2-pDV45 (II) and pG-268-2 (III) by RNAfold web server.

Supplementary Figure 2 | Results of the Blue-Carba assay obtained from E. coli
Isolate G-268-2. Beside the wildtype strain also its transformants containing the

IncB/O/K/Z-plasmid (blaCMY-2) and the IncX4-plasmid (mcr-1) were tested. As

positive control (PC) the blaVIM-1 containing isolate R178 was used. NTC, no

template control.
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