77 research outputs found

    The zebrafish xenograft platform-A novel tool for modeling KSHV-associated diseases

    Get PDF
    Kaposi\u27s sarcoma associated-herpesvirus (KSHV, also known as human herpesvirus-8) is a gammaherpesvirus that establishes life-long infection in human B lymphocytes. KSHV infection is typically asymptomatic, but immunosuppression can predispose KSHV-infected individuals to primary effusion lymphoma (PEL); a malignancy driven by aberrant proliferation of latently infected B lymphocytes, and supported by pro-inflammatory cytokines and angiogenic factors produced by cells that succumb to lytic viral replication. Here, we report the development of the firs

    The role of historical context in understanding past climate, pollution and health data in trans-disciplinary studies: reply to comments on More et al. 2017

    Get PDF
    Understanding the context from which evidence emerges is of paramount importance in reaching robust conclusions in scientific inquiries. This is as true of the present as it is of the past. In a trans‐disciplinary study such as More et al. (2017, https://doi.org/10.1002/2017GH000064) and many others appearing in this and similar journals, a proper analysis of context demands the use of historical evidence. This includes demographic, epidemiological, and socio‐economic data—common in many studies of the impact of anthropogenic pollution on human health—and, as in this specific case, also geoarchaeological evidence. These records anchor climate and pollution data in the geographic and human circumstances of history, without which we lose a fundamental understanding of the data itself. This article addresses Hinkley (2018, https://doi.org/10.1002/2018GH000105) by highlighting the importance of context, focusing on the historical and archaeological evidence, and then discussing atmospheric deposition and circulation in the specific region of our study. Since many of the assertions in Bindler (2018, https://doi.org/10.1002/2018GH000135) are congruent with our findings and directly contradict Hinkley (2018), this reply refers to Bindler (2018), whenever appropriate, and indicates where our evidence diverges

    Alpine ice and the annual political economy of the Angevin Empire, from the death of Thomas Becket to Magna Carta, c. AD 1170–1216

    Get PDF
    High-resolution analysis of the ice core from Colle Gnifetti, Switzerland, allows yearly and sub-annual measurement of pollution for the period of highest lead production in the European Middle Ages, c. AD 1170–1220. Here, the authors use atmospheric circulation analysis and other geoarchaeological records to establish that Britain was the principal source of that lead pollution. The comparison of annual lead deposition at Colle Gnifetti displays a strong similarity to trends in lead production documented in the English historical accounts. This research provides unique new insight into the yearly political economy and environmental impact of the Angevin Empire of Kings Henry II, Richard the Lionheart and John

    Alpine ice-core evidence for the transformation of the European monetary system, AD 640-670

    Get PDF
    © Antiquity Publications Ltd, 2018. The seventh-century AD switch from gold to silver currencies transformed the socio-economic landscape of North-west Europe. The source of silver, however, has proven elusive. Recent research, integrating ice-core data from the Colle Gnifetti drill site in the Swiss Alps, geoarchaeological records and numismatic and historical data, has provided new evidence for this transformation. Annual ice-core resolution data are combined with lead pollution analysis to demonstrate that significant new silver mining facilitated the change to silver coinage, and dates the introduction of such coinage to c. AD 660. Archaeological evidence and atmospheric modelling of lead pollution locates the probable source of the silver to mines at Melle, in France

    Status of research and development of vaccines for Streptococcus pyogenes.

    Get PDF
    Streptococcus pyogenes is an important global pathogen, causing considerable morbidity and mortality, especially in low and middle income countries where rheumatic heart disease and invasive infections are common. There is a number of promising vaccine candidates, most notably those based on the M protein, the key virulence factor for the bacterium. Vaccines against Streptococcus pyogenes are considered as impeded vaccines because of a number of crucial barriers to development. Considerable effort is needed by key players to bring current vaccine candidates through phase III clinical trials and there is a clear need to develop a roadmap for future development of current and new candidates

    Biallelic Mutations in MRPS34 Lead to Instability of the Small Mitoribosomal Subunit and Leigh Syndrome

    Get PDF
    The synthesis of all 13 mitochondrial DNA (mtDNA)-encoded protein subunits of the human oxidative phosphorylation (OXPHOS) system is carried out by mitochondrial ribosomes (mitoribosomes). Defects in the stability of mitoribosomal proteins or mitoribosome assembly impair mitochondrial protein translation, causing combined OXPHOS enzyme deficiency and clinical disease. Here we report four autosomal-recessive pathogenic mutations in the gene encoding the small mitoribosomal subunit protein, MRPS34, in six subjects from four unrelated families with Leigh syndrome and combined OXPHOS defects. Whole-exome sequencing was used to independently identify all variants. Two splice-site mutations were identified, including homozygous c.321+1G>T in a subject of Italian ancestry and homozygous c.322−10G>A in affected sibling pairs from two unrelated families of Puerto Rican descent. In addition, compound heterozygous MRPS34 mutations were identified in a proband of French ancestry; a missense (c.37G>A [p.Glu13Lys]) and a nonsense (c.94C>T [p.Gln32∗]) variant. We demonstrated that these mutations reduce MRPS34 protein levels and the synthesis of OXPHOS subunits encoded by mtDNA. Examination of the mitoribosome profile and quantitative proteomics showed that the mitochondrial translation defect was caused by destabilization of the small mitoribosomal subunit and impaired monosome assembly. Lentiviral-mediated expression of wild-type MRPS34 rescued the defect in mitochondrial translation observed in skin fibroblasts from affected subjects, confirming the pathogenicity of MRPS34 mutations. Our data establish that MRPS34 is required for normal function of the mitoribosome in humans and furthermore demonstrate the power of quantitative proteomic analysis to identify signatures of defects in specific cellular pathways in fibroblasts from subjects with inherited disease

    Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity

    Get PDF
    The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF
    • 

    corecore