85 research outputs found

    Experiments based on blue intensity for reconstructing North Pacific temperatures along the Gulf of Alaska

    Get PDF
    We gratefully acknowledge the National Science Foundation’s Paleoclimatic Perspectives on Climatic Change (P2C2) grant nos. AGS 1159430, AGS 1502186, AGS 1502150, and PLR 15-04134.Ring-width (RW) records from the Gulf of Alaska (GOA) have yielded a valuable long-term perspective for North Pacific changes on decadal to longer timescales in prior studies but contain a broad winter to late summer seasonal climate response. Similar to the highly climate-sensitive maximum latewood density (MXD) proxy, the blue intensity (BI) parameter has recently been shown to correlate well with year-to-year warm-season temperatures for a number of sites at northern latitudes. Since BI records are much less labour intensive and expensive to generate than MXD, such data hold great potential value for future tree-ring studies in the GOA and other regions in mid- to high latitudes. Here we explore the potential for improving tree-ring-based reconstructions using combinations of RW- and BI-related parameters (latewood BI and delta BI) from an experimental subset of samples at eight mountain hemlock (Tsuga mertensiana) sites along the GOA. This is the first study for the hemlock genus using BI data. We find that using either inverted latewood BI (LWBinv) or delta BI (DB) can improve the amount of explained temperature variance by > 10 % compared to RW alone, although the optimal target season shrinks to June–September, which may have implications for studying ocean–atmosphere variability in the region. One challenge in building these BI records is that resin extraction did not remove colour differences between the heartwood and sapwood; thus, long term trend biases, expressed as relatively warm temperatures in the 18th century, were noted when using the LWBinv data. Using DB appeared to overcome these trend biases, resulting in a reconstruction expressing 18th–19th century temperatures ca. 0.5 °C cooler than the 20th–21st centuries. This cool period agrees well with previous dendroclimatic studies and the glacial advance record in the region. Continuing BI measurement in the GOA region must focus on sampling and measuring more trees per site (> 20) and compiling more sites to overcome site-specific factors affecting climate response and using subfossil material to extend the record. Although LWBinv captures the inter-annual climate signal more strongly than DB, DB appears to better capture long-term secular trends that agree with other proxy archives in the region. Great care is needed, however, when implementing different detrending options and more experimentation is necessary to assess the utility of DB for different conifer species around the Northern Hemisphere.Publisher PDFPeer reviewe

    Dzuds, droughts, and livestock mortality in Mongolia

    Get PDF
    Recent incidences of mass livestock mortality, known as dzud, have called into question the sustainability of pastoral nomadic herding, the cornerstone of Mongolian culture. A total of 20 million head of livestock perished in the mortality events of 2000–2002, and 2009–2010. To mitigate the effects of such events on the lives of herders, international agencies such as the World Bank are taking increasing interest in developing tailored market-based solutions like index-insurance. Their ultimate success depends on understanding the historical context and underlying causes of mortality. In this paper we examine mortality in 21 Mongolian aimags (provinces) between 1955 and 2013 in order to explain its density independent cause(s) related to climate variability. We show that livestock mortality is most strongly linked to winter (November–February) temperatures, with incidences of mass mortality being most likely to occur because of an anomalously cold winter. Additionally, we find prior summer (July–September) drought and precipitation deficit to be important triggers for mortality that intensifies the effect of upcoming winter temperatures on livestock. Our density independent mortality model based on winter temperature, summer drought, summer precipitation, and summer potential evaporanspiration explains 48.4% of the total variability in the mortality dataset. The Mongolian index based livestock insurance program uses a threshold of 6% mortality to trigger payouts. We find that on average for Mongolia, the probability of exceedance of 6% mortality in any given year is 26% over the 59 year period between 1955 and 2013

    Accelerated recent warming and temperature variability over the past eight centuries in the central Asian Altai from blue intensity in tree rings

    Get PDF
    Funding: National Science Foundation (NSF). Grant Number: 1737788 and NOAA Climate and Global Change Postdoc Fellow Program. Grant Number: NA18NWS4620043B.Warming in Central Asia has been accelerating over the past three decades and is expected to intensify through the end of this century. Here, we develop a summer temperature reconstruction for western Mongolia spanning eight centuries (1269–2004 C.E.) using delta blue intensity measurements from annual rings of Siberian larch. A significant cooling response is observed in the year following major volcanic events and up to five years post-eruption. Observed summer temperatures since the 1990s are the warmest over the past eight centuries, an observation that is also well captured in Coupled Model Intercomparison Project (CMIP5) climate model simulations. Projections for summer temperature relative to observations suggest further warming of between ∼3°C and 6°C by the end of the century (2075–2099 cf. 1950–2004) under the representative concentration pathways 4.5 and 8.5 (RCP4.5 and RCP8.5) emission scenarios. We conclude that projected future warming lies beyond the range of natural climate variability for the past millennium as estimated by our reconstruction.Publisher PDFPeer reviewe
    • …
    corecore