78 research outputs found

    Robo3-Driven Axon Midline Crossing Conditions Functional Maturation of a Large Commissural Synapse

    Get PDF
    SummaryDuring the formation of neuronal circuits, axon pathfinding decisions specify the location of synapses on the correct brain side and in correct target areas. We investigated a possible link between axon midline crossing and the subsequent development of output synapses formed by these axons. Conditional knockout of Robo3 in the auditory system forced a large commissural synapse, the calyx of Held, to be exclusively formed on the wrong, ipsilateral side. Ipsilateral calyx of Held synapses showed strong transmission defects, with reduced and desynchronized transmitter release, fewer fast-releasable vesicles, and smaller and more variable presynaptic Ca2+ currents. Transmission defects were not observed in a downstream inhibitory synapse, and some defects persisted into adulthood. These results suggest that axon midline crossing conditions functional maturation of commissural synapses, thereby minimizing the impact of mislocalized synapses on information processing. This mechanism might be relevant to human disease caused by mutations in the ROBO3 gene

    Long-range guidance of spinal commissural axons by netrin1 and sonic hedgehog from midline floor plate cells

    Get PDF
    An important model for axon pathfinding is provided by guidance of embryonic commissural axons from dorsal spinal cord to ventral midline floor plate (FP). FP cells produce a chemoattractive activity, comprised largely of netrin1 (FP-netrin1) and Sonic hedgehog (Shh), that can attract the axons at a distance in vitro. netrin1 is also produced by ventricular zone (VZ) progenitors along the axons’ route (VZ-netrin1). Recent studies using region-specific netrin1 deletion suggested that FP-netrin1 is dispensable and VZ-netrin1 sufficient for netrin guidance activity in vivo. We show that removing FP-netrin1 actually causes guidance defects in spinal cord consistent with long-range action (i.e., over hundreds of micrometers), and double mutant analysis supports that FP-netrin1 and Shh collaborate to attract at long range. We further provide evidence that netrin1 may guide via chemotaxis or haptotaxis. These results support the model that netrin1 signals at both short and long range to guide commissural axons in spinal cord.Z.W. was supported by the Kavli Neural Systems Institute at The Rockefeller University. S.M. was supported by a Keidanren Ishizaka Memorial Foundation fellowship. S.T. was supported by fellowship funds from the Agency for Science, Technology and Research, Singapore (A∗STAR). N.R. was supported by a post-doctoral fellowship from the Shelby White – Leon Levy Foundation. Work performed in the M.T.-L. laboratory was supported by The Rockefeller University and Stanford University, work performed in the A.C. laboratory was supported by a grant from the Agence Nationale de la Recherche (ANR-14-CE13-0004-01), and work performed in the F.C. laboratory was supported by the Canadian Institutes of Health Research (CIHR FDN334023), the Fonds de Recherche du Québec - Santé (FRQS), and the Canada Foundation for Innovation (CFI 33768). F.C. holds the Canada Research Chair in Developmental Neurobiology.Peer reviewe

    Anatomy and function of the vertebral column lymphatic network in mice

    Get PDF
    Cranial lymphatic vessels (LVs) are involved in the transport of fluids, macromolecules and central nervous system (CNS) immune responses. Little information about spinal LVs is available, because these delicate structures are embedded within vertebral tissues and difficult to visualize using traditional histology. Here we show an extended vertebral column LV network using three-dimensional imaging of decalcified iDISCO(+)-clarified spine segments. Vertebral LVs connect to peripheral sensory and sympathetic ganglia and form metameric vertebral circuits connecting to lymph nodes and the thoracic duct. They drain the epidural space and the dura mater around the spinal cord and associate with leukocytes. Vertebral LVs remodel extensively after spinal cord injury and VEGF-C-induced vertebral lymphangiogenesis exacerbates the inflammatory responses, T cell infiltration and demyelination following focal spinal cord lesion. Therefore, vertebral LVs add to skull meningeal LVs as gatekeepers of CNS immunity and may be potential targets to improve the maintenance and repair of spinal tissues.Peer reviewe

    A Second-Generation Device for Automated Training and Quantitative Behavior Analyses of Molecularly-Tractable Model Organisms

    Get PDF
    A deep understanding of cognitive processes requires functional, quantitative analyses of the steps leading from genetics and the development of nervous system structure to behavior. Molecularly-tractable model systems such as Xenopus laevis and planaria offer an unprecedented opportunity to dissect the mechanisms determining the complex structure of the brain and CNS. A standardized platform that facilitated quantitative analysis of behavior would make a significant impact on evolutionary ethology, neuropharmacology, and cognitive science. While some animal tracking systems exist, the available systems do not allow automated training (feedback to individual subjects in real time, which is necessary for operant conditioning assays). The lack of standardization in the field, and the numerous technical challenges that face the development of a versatile system with the necessary capabilities, comprise a significant barrier keeping molecular developmental biology labs from integrating behavior analysis endpoints into their pharmacological and genetic perturbations. Here we report the development of a second-generation system that is a highly flexible, powerful machine vision and environmental control platform. In order to enable multidisciplinary studies aimed at understanding the roles of genes in brain function and behavior, and aid other laboratories that do not have the facilities to undergo complex engineering development, we describe the device and the problems that it overcomes. We also present sample data using frog tadpoles and flatworms to illustrate its use. Having solved significant engineering challenges in its construction, the resulting design is a relatively inexpensive instrument of wide relevance for several fields, and will accelerate interdisciplinary discovery in pharmacology, neurobiology, regenerative medicine, and cognitive science

    Audiotactile interactions in temporal perception

    Full text link

    Datasets for ClearMap - Fos cells detection

    No full text
    Datasets for Fos cell detection from light sheet microscopy on iDISCO+ cleared mouse brains from the Renier Lab, Paris Brain Institut
    corecore