337 research outputs found

    The transposable element-rich genome of the cereal pest Sitophilus oryzae

    Get PDF
    Background The rice weevil Sitophilus oryzae is one of the most important agricultural pests, causing extensive damage to cereal in fields and to stored grains. S. oryzae has an intracellular symbiotic relationship (endosymbiosis) with the Gram-negative bacterium Sodalis pierantonius and is a valuable model to decipher host-symbiont molecular interactions. Results We sequenced the Sitophilus oryzae genome using a combination of short and long reads to produce the best assembly for a Curculionidae species to date. We show that S. oryzae has undergone successive bursts of transposable element (TE) amplification, representing 72% of the genome. In addition, we show that many TE families are transcriptionally active, and changes in their expression are associated with insect endosymbiotic state. S. oryzae has undergone a high gene expansion rate, when compared to other beetles. Reconstruction of host-symbiont metabolic networks revealed that, despite its recent association with cereal weevils (30 kyear), S. pierantonius relies on the host for several amino acids and nucleotides to survive and to produce vitamins and essential amino acids required for insect development and cuticle biosynthesis. Conclusions Here we present the genome of an agricultural pest beetle, which may act as a foundation for pest control. In addition, S. oryzae may be a useful model for endosymbiosis, and studying TE evolution and regulation, along with the impact of TEs on eukaryotic genomes.Funding for this project was provided by the Fondation de l’Institut National des Sciences Appliquées-Lyon (INSA-Lyon), the research direction of INSA-Lyon, the Santé des Plantes et Environnement (SPE) department at the Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), the French ANR-10-BLAN-1701 (ImmunSymbArt), the French ANR-13-BSV7-0016-01 (IMetSym), the French ANR-17_CE20_0031_01 (GREEN), and a grant from la Région Rhône-Alpes (France) to AH. RR received funding from the French ANR-17-CE20-0015 (UNLEASH) and the IDEX-Lyon PALSE IMPULSION initiative. The project was also funded by European Regional Development Fund (ERDF) and Ministerio de Ciencia, Innovación y Universidades (Spain) PGC2018-099344-B-I00 to AL, and PID2019-105969GB-I00 to AM and Conselleria d’Educació, Generalitat Valenciana (Spain), grant number PROMETEO/2018/133 to AM. CV-C was a recipient of a fellowship from the Ministerio de Economía y Competitividad (Spain) and a grant from la Région Rhône-Alpes (France).Peer Reviewed"Article signat per 47 autors/es: Nicolas Parisot, Carlos Vargas-Chávez, Clément Goubert, Patrice Baa-Puyoulet, Séverine Balmand, Louis Beranger, Caroline Blanc, Aymeric Bonnamour, Matthieu Boulesteix, Nelly Burlet, Federica Calevro, Patrick Callaerts, Théo Chancy, Hubert Charles, Stefano Colella, André Da Silva Barbosa, Elisa Dell’Aglio, Alex Di Genova, Gérard Febvay, Toni Gabaldón, Mariana Galvão Ferrarini, Alexandra Gerber, Benjamin Gillet, Robert Hubley, Sandrine Hughes, Emmanuelle Jacquin-Joly, Justin Maire, Marina Marcet-Houben, Florent Masson, Camille Meslin, Nicolas Montagné, Andrés Moya, Ana Tereza Ribeiro de Vasconcelos, Gautier Richard, Jeb Rosen, Marie-France Sagot, Arian F. A. Smit, Jessica M. Storer, Carole Vincent-Monegat, Agnès Vallier, Aurélien Vigneron, Anna Zaidman-Rémy, Waël Zamoum, Cristina Vieira, Rita Rebollo, Amparo Latorre & Abdelaziz Heddi"Postprint (published version

    Gene Capture Coupled to High-Throughput Sequencing as a Strategy for Targeted Metagenome Exploration

    Get PDF
    International audienceNext-generation sequencing (NGS) allows faster acquisition of metagenomic data, but complete exploration of complex ecosystems is hindered by the extraordinary diversity of microorganisms. To reduce the environmental complexity, we created an innovative solution hybrid selection (SHS) method that is combined with NGS to characterize large DNA fragments harbouring biomarkers of interest. The quality of enrichment was evaluated after fragments containing the methyl coenzyme M reductase subunit A gene (mcrA), the biomarker of methanogenesis, were captured from a Methanosarcina strain and a metagenomic sample from a meromictic lake. The methanogen diversity was compared with direct metagenome and mcrA-based amplicon pyrosequencing strategies. The SHS approach resulted in the capture of DNA fragments up to 2.5 kb with an enrichment efficiency between 41 and 100%, depending on the sample complexity. Compared with direct metagenome and amplicons sequencing, SHS detected broader mcrA diversity, and it allowed efficient sampling of the rare biosphere and unknown sequences. In contrast to amplicon-based strategies, SHS is less biased and GC independent, and it recovered complete biomarker sequences in addition to conserved regions. Because this method can also isolate the regions flanking the target sequences, it could facilitate operon reconstructions

    Aeroacoustic radiation of a low Reynolds number two-bladed rotor in interaction with a cylindrical beam

    Get PDF
    In this paper, a characterization of a low Reynolds number two-bladed rotor in interaction with a beam is performed using both an experimental campaign performed in an anechoic room and implicit large eddy simulations (iLES) associated with the Ffowcs-Williams and Hawkins (F-WH) analogy. The rotor studied has a NACA0012 blade section profile extruded in the radial direction with a constant chord of 25 mm, a constant pitch of 10  and a diameter of 200 mm. This rotor is tested in interaction with 3 cylindrical beams of different diameters positioned at a distance of 20 mm below the rotor disk plane. The blade passing frequency (BPF) and the high frequency broadband noise appear to not be affected by the presence of the beam. On the contrary, the magnitude of the 2 BPF to 15 BPF harmonics increases up to 30 dB compared to the case without beam. For the dominant harmonics of the BPF, a dipole like pattern aligned with the beam can be observed. Numerical simulations were successfully validated against the experimental data for the dominant BPF harmonics and were then used to study the contribution of the rotor and the beam to the noise radiated. It is found that the beam is responsible for the increase in BPF harmonics and their characteristic directivity pattern

    Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine

    Get PDF
    BACKGROUND: A seventh order of methanogens, the Methanomassiliicoccales, has been identified in diverse anaerobic environments including the gastrointestinal tracts (GIT) of humans and other animals and may contribute significantly to methane emission and global warming. Methanomassiliicoccales are phylogenetically distant from all other orders of methanogens and belong to a large evolutionary branch composed by lineages of non-methanogenic archaea such as Thermoplasmatales, the Deep Hydrothermal Vent Euryarchaeota-2 (DHVE-2, Aciduliprofundum boonei) and the Marine Group-II (MG-II). To better understand this new order and its relationship to other archaea, we manually curated and extensively compared the genome sequences of three Methanomassiliicoccales representatives derived from human GIT microbiota, “Candidatus Methanomethylophilus alvus", “Candidatus Methanomassiliicoccus intestinalis” and Methanomassiliicoccus luminyensis. RESULTS: Comparative analyses revealed atypical features, such as the scattering of the ribosomal RNA genes in the genome and the absence of eukaryotic-like histone gene otherwise present in most of Euryarchaeota genomes. Previously identified in Thermoplasmatales genomes, these features are presently extended to several completely sequenced genomes of this large evolutionary branch, including MG-II and DHVE2. The three Methanomassiliicoccales genomes share a unique composition of genes involved in energy conservation suggesting an original combination of two main energy conservation processes previously described in other methanogens. They also display substantial differences with each other, such as their codon usage, the nature and origin of their CRISPRs systems and the genes possibly involved in particular environmental adaptations. The genome of M. luminyensis encodes several features to thrive in soil and sediment conditions suggesting its larger environmental distribution than GIT. Conversely, “Ca. M. alvus” and “Ca. M. intestinalis” do not present these features and could be more restricted and specialized on GIT. Prediction of the amber codon usage, either as a termination signal of translation or coding for pyrrolysine revealed contrasted patterns among the three genomes and suggests a different handling of the Pyl-encoding capacity. CONCLUSIONS: This study represents the first insights into the genomic organization and metabolic traits of the seventh order of methanogens. It suggests contrasted evolutionary history among the three analyzed Methanomassiliicoccales representatives and provides information on conserved characteristics among the overall methanogens and among Thermoplasmat

    Evolutionary novelty in the apoptotic pathway of aphids

    Get PDF
    Apoptosis, a conserved form of programmed cell death, shows interspecies differences that may reflect evolutionary diversification and adaptation, a notion that remains largely untested. Among insects, the most speciose animal group, the apoptotic pathway has only been fully characterized in Drosophila melanogaster, and apoptosis-related proteins have been studied in a few other dipteran and lepidopteran species. Here, we studied the apoptotic pathway in the aphid Acyrthosiphon pisum, an insect pest belonging to the Hemiptera, an earlier-diverging and distantly related order. We combined phylogenetic analyses and conserved domain identification to annotate the apoptotic pathway in A. pisum and found low caspase diversity and a large expansion of its inhibitory part, with 28 inhibitors of apoptosis (IAPs). We analyzed the spatiotemporal expression of a selected set of pea aphid IAPs and showed that they are differentially expressed in different life stages and tissues, suggesting functional diversification. Five IAPs are specifically induced in bacteriocytes, the specialized cells housing symbiotic bacteria, during their cell death. We demonstrated the antiapoptotic role of these five IAPs using heterologous expression in a tractable in vivo model, the Drosophila melanogaster developing eye. Interestingly, IAPs with the strongest antiapoptotic potential contain two BIR and two RING domains, a domain association that has not been observed in any other species. We finally analyzed all available aphid genomes and found that they all show large IAP expansion, with new combinations of protein domains, suggestive of evolutionarily novel aphidspecific functions

    Disruption of phenylalanine hydroxylase reduces adult lifespan and fecundity, and impairs embryonic development in parthenogenetic pea aphids

    Get PDF
    International audiencePhenylalanine hydroxylase (PAH) is a key tyrosine-biosynthetic enzyme involved in neurological and melanin-associated physiological processes. Despite extensive investigations in holometabolous insects, a PAH contribution to insect embryonic development has never been demonstrated. Here, we have characterized, for the first time, the PAH gene in a hemimetabolous insect, the aphid Acyrthosiphon pisum. Phylogenetic and sequence analyses confirmed that ApPAH is closely related to metazoan PAH, exhibiting the typical ACT regulatory and catalytic domains. Temporal expression patterns suggest that ApPAH has an important role in aphid developmental physiology, its mRNA levels peaking at the end of embryonic development. We used parental dsApPAH treatment to generate successful knockdown in aphid embryos and to study its developmental role. ApPAH inactivation shortens the adult aphid lifespan and considerably affects fecundity by diminishing the number of nymphs laid and impairing embryonic development, with newborn nymphs exhibiting severe morphological defects. Using single nymph HPLC analyses, we demonstrated a significant tyrosine deficiency and a consistent accumulation of the upstream tyrosine precursor, phenylalanine, in defective nymphs, thus confirming the RNAi-mediated disruption of PAH activity. This study provides first insights into the role of PAH in hemimetabolous insects and demonstrates that this metabolic gene is essential for insect embryonic development
    • …
    corecore