100 research outputs found

    Genomic data integration for ecological and evolutionary traits in non-model organisms

    Get PDF
    Why is it needed to develop system biology initiatives such as ENCODE on non-model organisms

    Spodoptera frugiperda transcriptional response to infestation by Steinernema carpocapsae

    Get PDF
    Steinernema carpocapsae is an entomopathogenic nematode (EPN) used in biological control of agricultural pest insects. It enters the hemocoel of its host via the intestinal tract and releases its symbiotic bacterium Xenorhabdus nematophila. In order to improve our knowledge about the physiological responses of its different hosts, we examined the transcriptional responses to EPN infestation of the fat body, the hemocytes and the midgut in the lepidopteran pest Spodoptera frugiperda. The tissues poorly respond to the infestation at an early time post-infestation of 8 h with only 5 genes differentially expressed in the fat body of the caterpillars. Strong transcriptional responses are observed at a later time point of 15 h post-infestation in all three tissues. Few genes are differentially expressed in the midgut but tissue-specific panels of induced metalloprotease inhibitors, immune receptors and antimicrobial peptides together with several uncharacterized genes are up-regulated in the fat body and the hemocytes. Among the most up-regulated genes, we identified new potential immune effectors, unique to Lepidoptera, which show homology with bacterial genes of unknown function. Altogether, these results pave the way for further functional studies of the responsive genes' involvement in the interaction with the EPN

    Divergent Transcriptional Regulatory Logic at the Intersection of Tissue Growth and Developmental Patterning

    Get PDF
    The Yorkie/Yap transcriptional coactivator is a well-known regulator of cellular proliferation in both invertebrates and mammals. As a coactivator, Yorkie (Yki) lacks a DNA binding domain and must partner with sequence-specific DNA binding proteins in the nucleus to regulate gene expression; in Drosophila, the developmental regulators Scalloped (Sd) and Homothorax (Hth) are two such partners. To determine the range of target genes regulated by these three transcription factors, we performed genome-wide chromatin immunoprecipitation experiments for each factor in both the wing and eye-antenna imaginal discs. Strong, tissue-specific binding patterns are observed for Sd and Hth, while Yki binding is remarkably similar across both tissues. Binding events common to the eye and wing are also present for Sd and Hth; these are associated with genes regulating cell proliferation and “housekeeping” functions, and account for the majority of Yki binding. In contrast, tissue-specific binding events for Sd and Hth significantly overlap enhancers that are active in the given tissue, are enriched in Sd and Hth DNA binding sites, respectively, and are associated with genes that are consistent with each factor's previously established tissue-specific functions. Tissue-specific binding events are also significantly associated with Polycomb targeted chromatin domains. To provide mechanistic insights into tissue-specific regulation, we identify and characterize eye and wing enhancers of the Yki-targeted bantam microRNA gene and demonstrate that they are dependent on direct binding by Hth and Sd, respectively. Overall these results suggest that both Sd and Hth use distinct strategies – one shared between tissues and associated with Yki, the other tissue-specific, generally Yki-independent and associated with developmental patterning – to regulate distinct gene sets during development

    Evolution of the robotic control frameworks at INRIA Rhône-Alpes

    Get PDF
    Demos - http://car2011.inrialpes.fr/presentations-and-papers/National audienceIntense efforts have been carried out in the last decades to de ne and implement frameworks to ease the development of robotic applications. This led each research group to propose their own solution, well suited for their needs, however no common framework has been adopted. But today we have the feeling that a peculiar framework has some of the qualities required to meet with general acceptance as far robotics research is concerned : the open source robotics platform ROS developed by Willow Garage. At INRIA Rhône-Alpes, we are such a research group that developed its own framework, Hugr. In this paper, we present the requirements that ruled its design and how we now envision migrating to ROS

    Integration of ADAS algorithm in a Vehicle Prototype

    No full text
    International audienceFor several years, INRIA and Toyota Europe have been working together in the development of algorithms directed to ADAS. This paper will describe the main results of this successful joint project, applied to a prototype vehicle equipped with several sensors. This work will detail the framework, steps taken and motivation behind the developed technologies, as well as address the requirements needed for the automobile industry

    Chromosomal Distribution of PcG Proteins during Drosophila Development

    Get PDF
    Polycomb group (PcG) proteins are able to maintain the memory of silent transcriptional states of homeotic genes throughout development. In Drosophila, they form multimeric complexes that bind to specific DNA regulatory elements named PcG response elements (PREs). To date, few PREs have been identified and the chromosomal distribution of PcG proteins during development is unknown. We used chromatin immunoprecipitation (ChIP) with genomic tiling path microarrays to analyze the binding profile of the PcG proteins Polycomb (PC) and Polyhomeotic (PH) across 10 Mb of euchromatin. We also analyzed the distribution of GAGA factor (GAF), a sequence-specific DNA binding protein that is found at most previously identified PREs. Our data show that PC and PH often bind to clustered regions within large loci that encode transcription factors which play multiple roles in developmental patterning and in the regulation of cell proliferation. GAF co-localizes with PC and PH to a limited extent, suggesting that GAF is not a necessary component of chromatin at PREs. Finally, the chromosome-association profile of PC and PH changes during development, suggesting that the function of these proteins in the regulation of some of their target genes might be more dynamic than previously anticipated

    Integration of ADAS algorithm in a Vehicle Prototype

    Get PDF
    International audienceFor several years, INRIA and Toyota Europe have been working together in the development of algorithms directed to ADAS. This paper will describe the main results of this successful joint project, applied to a prototype vehicle equipped with several sensors. This work will detail the framework, steps taken and motivation behind the developed technologies, as well as address the requirements needed for the automobile industry

    A comprehensive map of insulator elements for the Drosophila genome.

    Get PDF
    Insulators are DNA sequences that control the interactions among genomic regulatory elements and act as chromatin boundaries. A thorough understanding of their location and function is necessary to address the complexities of metazoan gene regulation. We studied by ChIP-chip the genome-wide binding sites of 6 insulator-associated proteins-dCTCF, CP190, BEAF-32, Su(Hw), Mod(mdg4), and GAF-to obtain the first comprehensive map of insulator elements in Drosophila embryos. We identify over 14,000 putative insulators, including all classically defined insulators. We find two major classes of insulators defined by dCTCF/CP190/BEAF-32 and Su(Hw), respectively. Distributional analyses of insulators revealed that particular sub-classes of insulator elements are excluded between cis-regulatory elements and their target promoters; divide differentially expressed, alternative, and divergent promoters; act as chromatin boundaries; are associated with chromosomal breakpoints among species; and are embedded within active chromatin domains. Together, these results provide a map demarcating the boundaries of gene regulatory units and a framework for understanding insulator function during the development and evolution of Drosophila
    corecore