
HAL Id: hal-01212431
https://hal.inria.fr/hal-01212431

Submitted on 8 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integration of ADAS algorithm in a Vehicle Prototype
Jerome Lussereau, Procópio Stein, Jean-Alix David, Lukas Rummelhard,
Amaury Nègre, Christian Laugier, Nicolas Vignard, Gabriel Othmezouri

To cite this version:
Jerome Lussereau, Procópio Stein, Jean-Alix David, Lukas Rummelhard, Amaury Nègre, et al.. In-
tegration of ADAS algorithm in a Vehicle Prototype. IEEE International Workshop on Advanced
Robotics and its Social Impacts ARSO 2015, Jul 2015, LYON, France. �hal-01212431�

https://hal.inria.fr/hal-01212431
https://hal.archives-ouvertes.fr


Integration of ADAS algorithm in a Vehicle Prototype

Jerome Lussereau1, Procópio Stein1, Jean-Alix David1, Lukas Rummelhard1,
Amaury Nègre2, Christian Laugier1, Nicolas Vignard3, Gabriel Othmezouri3

Abstract— For several years, INRIA and Toyota Europe
have been working together in the development of algorithms
directed to ADAS. This paper will describe the main results
of this successful joint project, applied to a prototype vehicle
equipped with several sensors.

This work will detail the framework, steps taken and
motivation behind the developed technologies, as well as address
the requirements needed for the automobile industry.

I. INTRODUCTION

In the scope of a collaboration project of INRIA Rhône-
Alpes and Toyota Europe, a prototype vehicle have been
upgraded to serve as a test platform for the development and
integration of ADAS technologies, that could be transferred
to the industry and find application in real-life situations.

Fig. 1: The Lexus LS600h test plaftorm vehicle with its
sensors highlighted

Figure 1 shows this vehicle, and its main sensors: two Ibeo
Lux LIDARs installed in the front, a high-resolution camera
and a stereocamera installed behind the windshield and a
GPS receiver and antenna. Coupled with the GPS receiver,
there is an IMU, which implements the integration of several
sensors with the GPS output to provide precise measurements
of the vehicle dynamics.

Besides the installed sensors, a connection to the CAN
bus of the platform provides access to other measurements,
as the steering wheel angle, pedals positions, turn lights,
wiper activation and several other internal functions of the

1 Institut National de Recherche en Informatique et Automatique,
INRIA Rhône-Alpes, France {jerome.lussereau,
procopio.silveira-stein, jean-alix.david,
lukas.rummelhard, christian.laugier}@inria.fr

2 LIG/CNRS, France amaury.negre@imag.fr
3 Toyota Motor Europe Technical Cen-

tre, Belgium {Gabriel.Othmezouri,
nicolas.vignard}@toyota-europe.com

vehicle that are useful for understanding what are the driver’s
intentions in a given moment.

This ”intelligent” vehicle perceives its immediate envi-
ronment using data from all onboard sensors. The purpose
of the perception is to interpret the observed scene at
different levels. The lowest level exploits sensor data to
build a simplified environment representation, for example
using a grid. At a higher level, it is possible to compute a
decomposition of the scene as a set of objects, associated
with information of position, speed, trajectory or class of
object (car, pedestrian, bicycle, etc.). The major difficulty lies
in the fact that observations of the environment are partial
and imperfect within a moving scene. This ”dynamic” aspect
brings strong constraints in terms of computing time.

Algorithms are used to understand the scene around the
vehicle. As the algorithm interface is always changing, the
design of the platform is really important. For example, it is
preferable to decouple algorithms from each other to reduce
dependency. A key point is to design reusable and testable
algorithms so that research project could be accelerate and
project collaboration could be improved.

The main objective of the developed algorithms is to
assist the driver not only in everyday situations, but also
in unexpected and difficult cases. In order to do so, the
developed technologies must be able to provide very fast
responses, in order to leave enough time for the driver to
take action.

The high speed processing is accomplished by creating
codes specifically for GPU accelerated computing. In such
framework, it is possible to parallelize calculations, greatly
improving the speed of an algorithm. The hardware used in
the work the parallel computing platform, Nvidia GeForce
Titan Black card with 2880 cores that can be used simulta-
neously.

This paper starts with a description of the deployment of
ROS architecture as a middleware put in place for the integra-
tion of the different systems of our vehicle in section II. After
that, three of the most important algorithms integrated with
our vehicle are presented. The lane detection and departure
system at section III; the visual-based localization at section
IV, explaining how to correct GPS measurements based on
road detection and map matching; and the fusion of different
sensors into an occupancy grid for risk assessment at section
V. Finally we will conclude with the perspectives and future
developments of this integration project.



II. ADAS ALGORITHM INTEGRATION

An algorithm is a piece of software that takes inputs,
processes them and provides outputs. In order to design a
simple architecture of algorithms or modules, it is important
to reduce dependencies.

The first level is the sensor part. Usually, it is the only
level where modules (or drivers) call directly the Software
Development Kit (SDK) or the Application Programming
Interface (API) of sensor to a get data. In the other level,
modules have to be independent, instead of calling directly
the interface, it is better to exchange data. The exchanged
data could be images, grids, bounding boxes, etc. Once
modules only use data type as inputs, it is easy to use
modules with online or offline data. In addition to the
exchanged data, it is useful to have a unified time stamping
of the data. This feature allows algorithms to compare the
freshness and synchronize several types of data. Furthermore,
the design should allow the interchangeability of modules so
that modules could be compared or exchanged with partners.

In order to do this design, it is easier to use a middleware.
In general, a middleware provides a way to connect modules,
send/receive and time stamp data. The Fig. 2 show you
typical demonstrator architecture by using a middleware.

Sensor Sensor Actuator

Middleware

Human Machine Interface

ModuleModuleModule

File

Fig. 2: Typical demonstrator architecture

At Inria, the team CHROMA uses the Robot Operating
System (ROS) middleware in a demonstrator [1]. It is used to
help researcher to reuse modules, standardize data types and
exchange data between modules. By using ROS, the team can
benefit from an active community which has already created
several modules or drivers.

A demonstrator is an experimental vehicle which con-
tains several sensor types (cameras, radars, LIDARs, etc.).
The goal of the INRIA and TOYOTA demonstrator is to
test/validate algorithms in real time, acquire special events
while driving and demonstrate algorithms functionalities. So
it is crucial to have the same algorithm processing online
data or offline data without changing anything.

To facilitate the use and the maintenance of the demon-
strator, it is necessary to set up a clear architecture, simple
and well cut:

• to design each driver in a ROS package (one message
type per sensor);

• to implement simple processing modules, performing a
single task each;

• to create a ROS package by application to simplify.
By using individual ROS packages, it is possible to select

which modules to use. For example, the Fig. 3 illustrates the
output of a LIDAR, a camera, an Occupancy Grids (OG) and
an algorithm which computes the Time to Collision (TTC)
of the first obstacle.

Fig. 3: Visualization of the time to collision and the first
perceived object.

To develop our algorithms, it is important to be able to
work on real data. ROS provides easy tools to register real
time-stamped data, which can be used to work offline in
the development step, allowing the evaluation of separate
modules individually.

With modularity an agile method of development has been
adopted. This approach allows the test of multiple solution
and to compare results in order to select the best technique
to be applied to a given problem.

Recorded data helps to categorize tests and classify what
situation they represented. This step is critical because it
allows to better choose what sensor to use according to the
situation. For example, the forward facing camera’s field of
view is not wide enough to detect the highway boundaries.
But merging data from the LIDAR helps to define where
are the boundaries, so the position of the vehicle inside the
highway can be better calculated.

For the sake of evaluation, it is also important to have a
precise ground-truth dataset. Again, the possibility of easily
working with registered data allows the creation of tools
to manually annotate information, which can be used to
evaluate the efficiency of the developed algorithms.

After a module have been tested with offline data and sat-
isfactory results are obtained, it is integrated in the vehicle’s
system. This permits testing its capacity to properly work
together with other modules in online situations and evaluate
the additional resources required for a smooth operation (cpu
load, network load, etc.).

III. LANE DETECTION AND DEPARTURE

Lane detection is one of the challenging problem for
ADAS. It give a model of the lane and the position of the
vehicle inside the lane, allowing alerts to be generated in the
case the vehicle inadvertently departure from a lane.



The aims of this lane tracker is to first detect two or more
white lines on the road and then define the position of the
vehicle inside the lane.

The white lines tracking is done with a particle filter
implemented for parallelized computation. Then in the road
plane, the distance between the center of the vehicle and the
left white line is measured to give the information of position
inside the lane.

a) Lane Tracker inputs: The lane tracker uses three
inputs: the image of the camera, the camera intrinsic pa-
rameters and the transformation between the road and the
camera frame.

b) Lane Tracker outputs: As a result of the detection,
the tracker will give an output that is a model of the lane
with five parameters: road width, road curvature, variation of
road curvature, lateral position of the vehicle and orientation
of the vehicle with respect to the lane. These parameters are
illustrated in Figure 4.

Fig. 4: Lane Tracker Model for a particle

c) Lane Tracker principles: The developed lane tracker
is build onto two cores: an evaluator that return the chance
of a pixel in the picture to be a white-line, and a particle
filter that performs the tracking of the line, to estimate its
future position. The aim of this filter is to improve the
evaluation of a pixel pertinence to a white-line. It allows
noisy measurements to be corrected, based on the expected
position of each line in the following instants. This particle
filter follows five steps, presented in Fig 5.

Each particle is a representation of a potential lane, so
each particle is evaluated to assess how far it is from the
actual lane in the image. To do this, a convolution of the
current image (converted to grayscale) and the projection of
the studied particle is performed. Fig. 6 illustrates the inputs
for the convolution operation.

This convolution will result in a new image where match-
ing white lines have a high value, and the sum of all pixel will
be the score of the particle. At the same time, by correctly
managing the scores of each particle, it is possible to detect
not only plain white lines but also dashed white lines.

In order to check the performance of this module, 3 tools
are used. One is designed to save the data (image and lane

1.Particle initialization

2.Particle state update

3.Evaluation of each particle

4.Redistribution of low weight particles

5. t = t + 1

Redistribution ?

Fig. 5: Particle filter steps

Projection of a particle in the image space (single row)

0

-1

2

Single row of pixel from the image

Fig. 6: Convolution input, showing a single row of a particle
projection in the image space and a single row of pixel from
the current image.

tracker data), another is used for manually marking picture
with splines data [2], and the final one merges the saved data
and the hand marked data to compared each line of the lane
tracker data with each spline of the ground-truth.

The result is a matrix of mean pixel distances between
ground-truth and computed lines. An Hungarian matching
algorithm [3] to calculate the lowest cost matching solution.
Finally, for a better evaluation of the pixel distance measure-
ments, three zones are defined in the image, corresponding
to a short, medium and long distances from the car.

Figure 7 illustrates this process. It is the evaluation of lane
tracker output at one instant. It gives a visual and an accurate
measurement of the mean pixel distances between green and
red lines in each of the three zones (delimited with blue
lines).

IV. VISUAL MAP-BASED LOCALISATION

Given the lack of affordable GPS for precise localization,
it is necessary to implement new ways to improve localiza-
tion for vehicles with low cost sensors. Here a new local-
ization method, which uses a geographic map and a camera,
is presented. The main point of this method is to combine
sensor readings and known data about the environment to



Fig. 7: Lane Tracker evaluation: red are lane tracker lines,
green are manual marked lines, and blue are range evaluation
zones.

Camera image

Map data

Corrected position

Detected ridges

OpenStreetMap data

Map generator Ridge detector

ICP

Fig. 8: The three parts of the approach: map generation,
ridge detection and comparison with ICP algorithm are
articuled as shown by this figure.

perform localization. Lane markings are detected using a
camera, and then the extracted lines are compared to the
ones stored in the map using ICP algorithm. Fig. 8 shows
the organization of the approach.

A. The map

To construct a map in the vehicle environment, data from
OpenStreetMap (OSM) [4] was used, specially because it is
a free and opensource database. The OSM provides infor-
mation on the roads and lanes, but there is no information
about lane markings. Thus, to obtain that information, lines
were generated semi-automaticaly, given roads and number
and width of the lanes. This step is done offline and the
new data are stored on the vehicle’s onboard computer. Then
requests can be send to this database to fetch local map data
while driving. Fig. 9 shows the results of the data conversion

Fig. 9: Data conversion. (a) Raw OSM data, a line represents
a road and it is not possible to see the lanes. (b) Modified
OSM data, with lane markings.

Fig. 10: Ridges detection. (a) Input image. (b) Projected
image. (c) Detected ridges.

process.

B. Line detection

The line extraction is done using ridge detection on a top-
down view of the camera image. Only one monocular camera
is used, as it is an inexpensive sensor, and needs only to be
calibrated once. The line detection is based on an algorithm
using laplacian to extract ridges of the monochrome image.
The algorithm is implemented for parallelized calculation
using CUDA on a GPU, for an improved performance.
Figure 10 shows the results of the ridge detector.

C. Matching by ICP algorithm

These data are compared using an ICP algorithm to obtain
a better localization of the vehicle. The ICP is an iterative
algorithm which minimizes the sum of the distances between
the points detected as ridges and the segments of line
extracted from the map. Each iteration is composed of two
step:

1) the matching of the lines, each point is matched to the
closest segment.

2) the computation of the corrected position using
Levenberg-Marquardt algorithm to minimize the sum
of errors.

On Fig. 11 it is possible to see the results of the ICP in a
highway scenario. It takes place on a two-lane road before it
merges with another two-lane road. In the lower right corner
it is possible to see the view of the camera, and thus that the
vehicle is on the rightmost lane. The green lines correspond
to the lines of the map. The red dots correspond to the
detected lines. The red arrow corresponds to the position



Fig. 11: ICP correction on highway

given by the GPS, which puts the car on the left of the
leftmost lane. The white car corresponds to the corrected
position, which puts the car in the middle of the rightmost
lane, which is the correct position.

The results are very promising on highways, but the
algorithm has a lower performance on other types of roads,
mostly due to irregularities.

V. SENSOR FUSION USING AN OCCUPANCY GRID

One of the central development of this work is a low-level
representation of the surrounding environment, which may
serve as a building base for the development of additional
high-level modules. Such representation is accomplished
with the use of OG [5], which allows the implementation
of a model of the environment that encompass both static
and dynamic features surrounding the vehicle.

An advantage of the proposed approach is that it is sensor
independent, being able to work with and fuse information
from different sources, as LIDAR, stereocamera, infrared,
RADAR, and so on [6], [7].

In the current platform, the data source used for the mod-
eling of the vehicle surrounding comes from two LIDARs
installed in the front of the vehicle. Each one of these
LIDARs have four measurement layers, which are used to
create individual OGs. The resulting eight OG are then fused
into a single one, to be later filtered and enhanced using the
Hybrid Sampling Bayesian Occupancy Filter (HSBOF) [8],
[9].

Such filter provides an efficient manner of representing
static and dynamic features of the environment around the
experimental platform. The main strengths of the algorithm
rest on :

• the distinction between static and dynamic grid cells;
• the use of classic grids in motionless areas, and particles

to model the motion of dynamic areas.
These two features greatly reduce the requirement of com-

puter resources and at the same time, improve the accuracy
of the models. Fig. 12 illustrates this model.

Examples of the use of the HSBOF are shown in Fig. 13,
with tests performed both in urban and highway environment.

Fig. 12: Proposed representation : a 2 dimension grid, to each
cell are assigned an occupancy value, a static coefficient and
a set of particles

With a dynamic representation, it is possible to compute
the probability of the risk of collision between the exper-
imental platform and any static or dynamic element of the
environment modeled by the HSBOF [10], [9]. To perform
this computation, a future projection of the vehicle and of the
occupancy grid is created. Such projection is performed for
several small timesteps, where a list of all collisions between
particles and the vehicle projection are stored in a list, as
illustrated in Fig. 14.

With this list, it is possible to query the algorithm for the
probability of collision during different time windows, which
permit distinct alerts to be given to the driver, according to
the TTC. For example, in a longer time horizon the algorithm
can generate an alert and in the case of an imminent collision,
the algorithm can activate the brake and pre-crash systems.

Another important advantage of this approach is that not
only it is possible to predict when a collision will happen,
but also where it will take place in the map, and from where
in the environment the risk is coming. This greatly increases
the type of alerts to be generated and the treatment possible
with such information.

Pedestrian collisions have been tested with a soft human-
sized crash test dummy, which allowed to validate the
accuracy of the risk detection, the TTC and the probability
associated with it. The HSBOF presented substantial results,
whether it be for grid occupancy construction, motion es-
timation or collision risk assessment. Figure 15 shows an
example of a real test of the risk assessment system, already
integrated into the vehicle’s ecosystem.

VI. CONCLUSIONS
During the last five years, Toyota and INRIA have been

working together on the project presented in this work. This
partnership have produce several important results, among
articles, thesis subjects and also a patent on predictive
technologies. The HSBOF algorithm, that represents the base
layer of development, is already integrated in the vehicle
and providing very good results, specially regarding the risk
assessment.



Fig. 13: Resulting occupancy grid and velocity field on
different urban and highway situations. Black cells represent
the occupied space and red lines represent the average
velocity vector for cell with a high dynamic probability.

Recently new performance tests have been conducted
using the HSBOF on an NVIDIA Jetson Pro card, which
performs parallel calculation. The advantage of using this
hardware is its reduced size and power consumption. These
are important requirements for a future development as an
off-the-shelve solution for automotive perception.

A future objective of our team is to focus on the incorpo-
ration of the object concept at the HSBOF, in order to reach
higher level models of the environment. The classification of
an object as a bicycle, a car or a pedestrian, for example,
allows a better prediction and behavior assessment. This
improves the knowledge of the vehicle surrounding and
enhances the assistance provided to the driver.

REFERENCES

[1] Morgan Quigley, Brian Gerkeyy, Ken Conleyy, Josh Fausty, Tully

t t+1 t+2

t t+1 t+2

Collision

Fig. 14: Collision risk estimation over time for a specific
cell. The cell position is predicted according to its velocity,
along with the mobile robot. This risk profile is computed
for every cell, and then used to integrate over time the global
collision risk.

Fig. 15: Real test example of collision detection. The white
car blocks the view of a pedestrian (blue) until the last
instant when it swerves to the right. The collision detection
algorithm installed in the Lexus platform generated alerts
about an imminent collision for the driver.

Footey, Jeremy Leibsz, Eric Bergery, Rob Wheelery, and Andrew Ng,
“ROS: an open-source Robot Operating System,” in ICRA Workshop
on Open Source Software, 2009.

[2] M. Aly, “Caltech Lanes Dataset,” April 2015. [Online]. Available:
http://vision.caltech.edu/malaa/datasets/caltech-lanes/

[3] H. W. Kuhn, “The hungarian method for the assignment problem,”
Naval research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[4] “OpenStreetMap,” April 2015. [Online]. Available:
https://www.openstreetmap.org

[5] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, vol. 22, no. 6, pp. 46–57, 1989.

[6] J.-D. Yoder, M. Perrollaz, I. Paromtchik, Y. Mao, and C. Laugier,
“Experiments in Vision-Laser Fusion using the Bayesian Occupancy
Filter,” in International Symposium on Experimental Robotics, Delhi,
India, Dec. 2010.

[7] Q. Baig, M. Perrollaz, J. Botelho, and C. Laugier, “Fast classification
of static and dynamic environment for Bayesian Occupancy Filter
(BOF),” in IROS12 4th Workshop on Planning, Perception and Navi-
gation for Intelligent Vehicles, Villamoura, Portugal, June 2012.

[8] A. Nègre, L. Rummelhard, and C. Laugier, “Hybrid Sampling
Bayesian Occupancy Filter,” in IEEE Intelligent Vehicles Symposium
(IV), Dearborn, United States, June 2014.

[9] L. Rummelhard, A. Nègre, M. Perrollaz, and C. Laugier, “Probabilistic
Grid-based Collision Risk Prediction for Driving Application,” in
ISER, Marrakech/Essaouira, Morocco, June 2014.

[10] Q. Baig, M. Perrollaz, and C. Laugier, “Advances in the Bayesian
Occupancy Filter framework using robust motion detection technique
for dynamic environment monitoring,” IEEE Robotics and Automation
Magazine, Mar. 2014.


