5,729 research outputs found

    Phase diagram for a copolymer in a micro-emulsion

    Full text link
    In this paper we study a model describing a copolymer in a micro-emulsion. The copolymer consists of a random concatenation of hydrophobic and hydrophilic monomers, the micro-emulsion consists of large blocks of oil and water arranged in a percolation-type fashion. The interaction Hamiltonian assigns energy α-\alpha to hydrophobic monomers in oil and energy β-\beta to hydrophilic monomers in water, where α,β\alpha,\beta are parameters that without loss of generality are taken to lie in the cone {(α,β)R2 ⁣:αβ}\{(\alpha,\beta) \in\mathbb{R}^2\colon\,\alpha \geq |\beta|\}. Depending on the values of these parameters, the copolymer either stays close to the oil-water interface (localization) or wanders off into the oil and/or the water (delocalization). Based on an assumption about the strict concavity of the free energy of a copolymer near a linear interface, we derive a variational formula for the quenched free energy per monomer that is column-based, i.e., captures what the copolymer does in columns of different type. We subsequently transform this into a variational formula that is slope-based, i.e., captures what the polymer does as it travels at different slopes, and we use the latter to identify the phase diagram in the (α,β)(\alpha,\beta)-cone. There are two regimes: supercritical (the oil blocks percolate) and subcritical (the oil blocks do not percolate). The supercritical and the subcritical phase diagram each have two localized phases and two delocalized phases, separated by four critical curves meeting at a quadruple critical point. The different phases correspond to the different ways in which the copolymer can move through the micro-emulsion. The analysis of the phase diagram is based on three hypotheses of percolation-type on the blocks. We show that these three hypotheses are plausible, but do not provide a proof.Comment: 100 pages, 16 figures. arXiv admin note: substantial text overlap with arXiv:1204.123

    Probing many-body localization with neural networks

    Get PDF
    We show that a simple artificial neural network trained on entanglement spectra of individual states of a many-body quantum system can be used to determine the transition between a many-body localized and a thermalizing regime. Specifically, we study the Heisenberg spin-1/2 chain in a random external field. We employ a multilayer perceptron with a single hidden layer, which is trained on labeled entanglement spectra pertaining to the fully localized and fully thermal regimes. We then apply this network to classify spectra belonging to states in the transition region. For training, we use a cost function that contains, in addition to the usual error and regularization parts, a term that favors a confident classification of the transition region states. The resulting phase diagram is in good agreement with the one obtained by more conventional methods and can be computed for small systems. In particular, the neural network outperforms conventional methods in classifying individual eigenstates pertaining to a single disorder realization. It allows us to map out the structure of these eigenstates across the transition with spatial resolution. Furthermore, we analyze the network operation using the dreaming technique to show that the neural network correctly learns by itself the power-law structure of the entanglement spectra in the many-body localized regime.Comment: 12 pages, 10 figure

    A new adaptive response surface method for reliability analysis

    Get PDF
    Response surface method is a convenient tool to assess reliability for a wide range of structural mechanical problems. More specifically, adaptive schemes which consist in iteratively refine the experimental design close to the limit state have received much attention. However, it is generally difficult to take into account a lot of variables and to well handle approximation error. The method, proposed in this paper, addresses these points using sparse response surface and a relevant criterion for results accuracy. For this purpose, a response surface is built from an initial Latin Hypercube Sampling (LHS) where the most significant terms are chosen from statistical criteria and cross-validation method. At each step, LHS is refined in a region of interest defined with respect to an importance level on probability density in the design point. Two convergence criteria are used in the procedure: The first one concerns localization of the region and the second one the response surface quality. Finally, a bootstrap method is used to determine the influence of the response error on the estimated probability of failure. This method is applied to several examples and results are discussed

    Efficient Linear Scaling Approach for Computing the Kubo Hall Conductivity

    Get PDF
    We report an order-N approach to compute the Kubo Hall conductivity for disorderd two-dimensional systems reaching tens of millions of orbitals, and realistic values of the applied external magnetic fields (as low as a few Tesla). A time-evolution scheme is employed to evaluate the Hall conductivity σxy\sigma_{xy} using a wavepacket propagation method and a continued fraction expansion for the computation of diagonal and off-diagonal matrix elements of the Green functions. The validity of the method is demonstrated by comparison of results with brute-force diagonalization of the Kubo formula, using (disordered) graphene as system of study. This approach to mesoscopic system sizes is opening an unprecedented perspective for so-called reverse engineering in which the available experimental transport data are used to get a deeper understanding of the microscopic structure of the samples. Besides, this will not only allow addressing subtle issues in terms of resistance standardization of large scale materials (such as wafer scale polycrystalline graphene), but will also enable the discovery of new quantum transport phenomena in complex two-dimensional materials, out of reach with classical methods.Comment: submitted PRB pape

    Universal Low Temperature Asymptotics of the Correlation Functions of the Heisenberg Chain

    Full text link
    We calculate the low temperature asymptotics of a function γ\gamma that generates the temperature dependence of all static correlation functions of the isotropic Heisenberg chain.Comment: Proceedings of the International Workshop "Recent Advances in Quantum Integrable Systems" (Annecy, France

    Bunching and anti-bunching of localised particles in disordered media

    Full text link
    We consider pairs of non-interacting quantum particles transmitted through a disordered medium, with emphasis on the role of their quantum statistics. It is shown that particle-number correlations measured in transmission are strikingly sensitive to the quantum nature of the particles when they undergo Anderson localisation, due to bosonic bunching and fermionic anti-bunching in the scattering channels of the medium. The case of distinguishable particles is also discussed.Comment: 5 pages, 3 figure
    corecore