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We show that a simple artificial neural network trained on entanglement spectra of individual states of a
many-body quantum system can be used to determine the transition between a many-body localized and a
thermalizing regime. Specifically, we study the Heisenberg spin-1/2 chain in a random external field. We employ
a multilayer perceptron with a single hidden layer, which is trained on labeled entanglement spectra pertaining
to the fully localized and fully thermal regimes. We then apply this network to classify spectra belonging to
states in the transition region. For training, we use a cost function that contains, in addition to the usual error
and regularization parts, a term that favors a confident classification of the transition region states. The resulting
phase diagram is in good agreement with the one obtained by more conventional methods and can be computed
for small systems. In particular, the neural network outperforms conventional methods in classifying individual
eigenstates pertaining to a single disorder realization. It allows us to map out the structure of these eigenstates
across the transition with spatial resolution. Furthermore, we analyze the network operation using the dreaming
technique to show that the neural network correctly learns by itself the power-law structure of the entanglement
spectra in the many-body localized regime.
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I. INTRODUCTION

Artificial neural networks are routinely employed for data
classification. They are useful when features distinguishing
one class of data from another are unknown or unwieldy. A
neural network can learn such features from examples, i.e.,
a set of labeled training data. In physics, the application
of neural networks, and machine learning in general, to
many-body quantum mechanics is a novel and burgeoning
field of research [1]. Currently, there are three main lines of
pursuit: the application of machine learning to the problem
of classifying various phases of matter [2–9], accelerating
material searches and design [10–13], and the quest to encode
quantum mechanical states in structures mimicking the setup
of a neural network [14–16]. This work is concerned with the
first kind of approach. Most previous studies have considered
the identification of phases and phase transitions by training
neural networks on a large set of prototype configurations.
Here, we instead use entanglement spectra [17], which in
recent years emerged as a powerful tool to characterize a
plethora of physical systems, and have been employed for a
neural network based detection of phase transitions in Ref. [8].

We apply neural network based phase classification to a
fundamental question in quantum statistical physics, namely,
the distinction between systems that obey the eigenstate
thermalization hypothesis (ETH) and those violating it. Ac-
cording to the ETH, local observables in a typical many-body
eigenstate should take the values that pertain to the observables
in a thermal ensemble, with the whole system acting as a
heat bath for its subsystems in the thermodynamic limit. A
well-studied class of systems that violate the ETH are those
exhibiting many-body localization (MBL) [18–25], meaning
that partial memory of initial conditions is preserved for
infinite times. Due to this property, which is intimately related
to the emergence of an extensive number of integrals of motion
[23,26–28], MBL systems have been envisioned as particularly

robust quantum memories [29]. Here, we study the Heisenberg
chain in a random field as a simple model for MBL. At
strong disorder, the model is in the MBL regime, whereas
it satisfies the ETH if disorder is weak. Several measures or
quantities allow a well-controlled quantitative distinction of
thermal and localized regimes. They have been used to study
the ETH-MBL transition in finite size numerical simulations,
in particular for an extensive analysis of the Heisenberg model
in a random field. These characterizing quantities include
energy level statistics [30–35], level statistics [25,36] as well
as density of states [37] analyses of the entanglement spectrum
and studies of the distribution of the entanglement entropy over
a region of energy eigenstates [18,38–43]. Necessarily, these
methods rely on a physical understanding of the nature of either
regime or of the transition. The neural network based method
for identifying the ETH-MBL transition that we present
here requires only that the information for distinguishing the
ETH from the MBL regime is—in some form—contained
in the entanglement spectrum. This is useful in particular in
situations where the physical characteristics of a phase are not
fully understood, as one may certainly argue to be the case for
MBL [44,45]. Thus, the neural network approach also allows
for the possibility of finding ways of characterizing the phase
transition beyond established methods, with the network’s
architecture providing a variational ansatz for a classification
criterion.

We use the network to classify the entanglement spectra
of all eigenstates of the Heisenberg chain, which are obtained
by exact diagonalization, in particular at finite energy density
(note that Ref. [8] has characterized the transition using ground
state properties of the disordered Heisenberg chain via a neural
network-based approach of classifying entanglement spectra).
For a specific disorder configuration, this allows, for instance,
to trace the evolution of individual ETH states deep in the MBL
regime [40,46–48]. We achieve this by considering the spectra
from multiple real-space entanglement cuts as input for the
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FIG. 1. Phase diagram of the Heisenberg chain with
Hamiltonian (5) obtained from the neural network ansatz in Eq. (7)
trained with cost function (8) on entanglement spectra obtained from
an exact diagonalization on N = 16 sites. The plot shows the average
confidence for the MBL phase over 40 realizations of disorder as a
function of the absolute maximal values of the random magnetic field
h̄, spaced with �h̄ = 0.125, and for eigenstates belonging to differ-
ent rescaled energies ε = (E − Emin)/(Emax − Emin). Compared to
Ref. [18] where a similar plot was obtained with better-controlled,
yet more sophisticated methods, we have used smaller systems and
fewer disorder realizations.

neural network. By averaging over disorder realizations, we
obtain a phase diagram (Fig. 1) that indicates the location of
the ETH-MBL transition as a function of energy density and
disorder strength. It is in good agreement with results obtained
using conventional methods [18,36,43,49].

This paper is organized as follows. In Sec. II, which may
also be read as a short introduction to neural networks, we
introduce the general setup of the network used here, suited
for binary classification of data. Subsequently, in Sec. III, we
review the Heisenberg spin chain in a random field, and define
the entanglement spectrum. We then discuss the type of input
data as well as the network architecture used for classifying
entanglement spectra as MBL or ETH in Sec. IV. In Sec. V,
we present our results and compare them to existing methods.

II. NEURAL NETWORKS FOR BINARY CLASSIFICATION

An artificial neural network is an alternating sequence of
affine linear maps and nonlinear functions that are successively
applied to input data x giving output y. Each pair of maps
in this sequence is a layer of the network. Let the target
space of the αth layer of the network have dimension nα+1,
corresponding to nα+1 neurons. In this work, we focus on
binary classification, where we want to learn a map f (x) from
the data set {x}, represented by vectors x of dimension n1, to
the discrete target set {(0,1),(1,0)}. This representation of the
target set is somewhat arbitrary—here, we choose one-hot
vectors, i.e., vectors with a single nonzero element. Their
entries are interpreted as the neurons of the output layer.

The network setup described above now implements a trial
map f̂ , which should approximate the unknown map f as good

as possible. One important difference is that while the target
space of f is discrete, that of f̂ is continuous. This allows for
smooth convergence of f̂ to f . To achieve this, we first train
the network by adjusting its parameters to gradually improve
its performance on a training set which is labeled, i.e., for
which the output of f is known to be either (0,1) or (1,0) for
each x. We then apply the network to a testing set to evaluate
how well it generalizes to classify data that it has not seen
before. It is essential to avoid overfitting: with a large number
n2 of neurons, the network will learn not only the general
rules by which the data can be identified as pertaining to the
MBL or ETH regimes. Rather, it will also pick up nonuniversal
features, such as noise specific to the training data set that was
used. To improve the generalization capability of the network
at this stage, we employ cross-validation: we first obtain the
training and testing sets by randomly subdividing a large set
of labeled data into two parts of equal size, and then average
the trained network’s output (when applying it to previously
unlabelled data) over multiple such training runs.

We now describe the full action of the network on the input
data. In the first layer, the input vectors x of dimension n1 are
mapped to a space of dimension n2 via an affine linear map
x �→ V (2,1) x + a(2), followed by the application of a nonlinear
activation function g2 (the nonlinearity of which is required
in order to be able to approximate arbitrary maps f ), so that
the full action of the first layer may be written as x ≡ x(1) �→
x(2) = g2(V (2,1) x + a(2)). Here, V (2,1) is a n2 × n1 matrix, and
matrix-vector multiplication between V (2,1) and x is implied
here as well as below. Each entry of the resulting vector x(2) can
be interpreted as the output of an individual neuron, of which
there are n2 in total. In general, the first layer is followed by
further layers, each of which implements the map

x(α) �→ x(α+1) = gα+1(V (α+1,α) x(α) + a(α+1)). (1)

The elements of the rows in the matrix V (α+1,α) are called
the weights of the respective neuron, and the corresponding
element of the vectors a(α+1) are referred to as its bias. All
layers but the last one are called hidden layers. If there are h

hidden layers, x(h+2) = y is the two-component output vector.
In the networks we use, all vectors, matrices, and numbers are
real.

In the following, we will use a network with h = 1, built
from the activation functions g2 = ReLU and g3 = Softmax,
defined as

ReLUi(x) = xi θ (xi),

Softmaxi(x) = e−xi

∑
j e−xj

, (2)

which are applied componentwise on their vector-valued
argument, and the indices i,j run over these components. The
projections of the Softmax output onto the target set vectors
sum up to 1 and can be interpreted as the confidences with
which the network allocates the input data to the respective
class. For a schematic representation of our network, see Fig. 2.

In order for f̂ to approximate f , we need to tune the
parameters of the network, i.e., the weights and biases, to
minimize the discrepancy encoded in an appropriately chosen
error functional Cost(f̂ ,f ). The common choice suited for a
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FIG. 2. Schematic setup of the neural network used to map
entanglement spectra to the confidence with which they are classified
as either belonging to the ETH or MBL regime. This map, which is
explicitly given by Eq. (7), can be interpreted as the action of a hidden
layer of neurons on the input data, followed by a output layer of two
neurons which correspond to the two options of classification. Note
that our choice of a Softmax activation function for the output layer
implies that the confidences for ETH and MBL sum up to 1.

Softmax output layer is the cross entropy

Cost(f̂ ,f ) = −
∑

x∈{x}

2∑

i=1

fi(x) ln f̂i(x). (3)

In training, we then hope to find the global minimum of
this functional. One starts from, e.g., randomly initialized
weights and biases, which we jointly denote as X0, and then
successively applies gradient descent to the weights and biases
at step n to obtain those at n + 1 as

Xn+1 = Xn − λ
∂

∂Xn

Cost, Xn ∈ {
V

(α+1,α)
ij ,a

(α)
i

}
. (4)

The step size λ should neither be too large (otherwise minima
are overlooked), nor too small (otherwise convergence is
slow and it becomes harder to escape from local minima).
A parameter such as λ, which is not changed during training,
but rather determines how we train, is called a hyperparameter.
Here, we fix λ empirically by requiring optimal minimization
of the error on the training data. Each such iteration Xn �→
Xn+1 of gradient descent is called a training step. Since it
is too cumbersome to evaluate the error functional for large
training sets, we employ stochastic gradient descent; for each
iteration, one randomly chooses a relatively small subset of {x}
as training data. Note that from the point of view of variational
calculus, a neural network just corresponds to a shrewd and
economic choice of ansatz for minimizing the functional (3).

III. MANY-BODY LOCALIZATION IN THE HEISENBERG
CHAIN AND ENTANGLEMENT SPECTRUM

As a toy model for MBL, we study the Heisenberg
Hamiltonian in a random field in z direction,

H = J

N−1∑

r=1

Sr · Sr+1 +
N∑

r=1

hrS
z
r , (5)

on an N -site chain of spin-1/2 degrees of freedom with open
boundary conditions. Here, S = 1

2σ acts on the spin on a
given site, with σ the vector of Pauli matrices, and the hr,
r = 1, . . . ,N , are static random external fields taken from a
uniform distribution in the interval [−h̄,h̄]. In the following,
we will set J = 1. The system is integrable for h̄ = 0. System
realizations with h̄ � 1 are in a thermalizing (ETH) regime.
System realizations with h̄ � 1 are in an MBL regime. Both
regimes are characterized by different energy level statistics:
the ETH regime exhibits level repulsion obeying the Gaussian
orthogonal ensemble (GOE) for the Heisenberg Hamiltonian
of Eq. (5). On the other hand, the energy spectrum in the MBL
regime has Poisson level statistics.

In between the two limits, the behavior of a specific system
being either ETH or MBL depends on the specific disorder
realization and the eigenstate that is considered. Averaging
over disorder realizations removes these dependencies, but the
transition between ETH and MBL regimes may still depend
on the energy density at which the system is probed, which
amounts to the existence of a many-body mobility edge. We
will assume that at h̄ = 0.25 and 12.0 almost all eigenstates
belong to the ETH or MBL regime, respectively.

A characteristic that has been shown to discriminate
between ETH and MBL regimes is the entanglement spectrum.
It is defined as follows. Consider the reduced density matrix
ρA of a system in the pure state |	〉 obtained by subdividing
the Hilbert space into two parts, A and B, and tracing out the
degrees of freedom of B,

ρA = TrB |	〉 〈	| ≡ e−He . (6)

The last equality defines the entanglement Hamiltonian He.
Here we are interested in a real-space cut separating regions A

and B such that all lattice sites r � NA, for some 0 < NA < N ,
are in A, and B is the complement of A. The spectrum of He

is called the entanglement spectrum, and contains information
about the nature of |	〉.

Several possibilities have been explored to determine from
the entanglement properties whether a state |	〉 at finite energy
density and fixed disorder shares the character of the MBL or
ETH regime. (i) The “Schmidt gap” λ1(ρA) − λ2(ρA), where
{λj (ρA); λj � λj+1} denotes the spectrum of ρA. Being the
difference of the two largest eigenvalues of the density matrix,
i.e., of the square of the two largest coefficients in the Schmidt
decomposition of the system into A and B, it is nearly 0 for
mixed ρA, typical for the ETH regime, and approximates 1 for
almost pure ρA, characteristic of the MBL phase [50]. (ii) ETH
states have volume-law entanglement scaling, while MBL
states have area-law entanglement scaling. To discriminate
between the two in a one-dimensional system, one computes
the entanglement entropy S(NA) as a function of NA. Extensive
scaling of S(NA) with NA is expected in the ETH regime,
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while S(NA) is constant over different values of NA in the
MBL regime. (iii) The standard deviation σE of a sample
of entanglement entropies calculated from eigenstates in a
range of energies [E,E + �E]. Within either phase, σE is
small, while near the transition, where we find both MBL-like
and ETH-like states in the energy interval that is probed,
σE is enhanced [39–41,43]. (iv) The level spacings in the
entanglement spectrum follow distinct statistical distributions
in the ETH and MBL regimes. A statistical analysis of the level
distributions thus allows to identify the nature of individual
eigenstates [25,36].

The power of the neural-network based approach of
classifying entanglement spectra as ETH or MBL that we
pursue here is that it does not require any a priori knowledge
of such criteria. Indeed, the neural network is expected to learn
them by itself from the training by examples. In Sec. V, we
compare its performance with (i) and (iii), as well as with the
energy level statistics.

IV. TRAINING DATA AND NETWORK ARCHITECTURE

We train with a single-hidden-layer neural network aimed
at binary classification of entanglement spectra for eigenstates
obtained from the exact diagonalization of Hamiltonian (5).
For a N -site chain, there are |{x}| = 2N eigenstates. Notice,
however, that the total spin projection in z direction measured
by the operator Sz

tot = ∑N
r=1 Sz

r commutes with the Hamilto-
nian (5), corresponding to a global spin rotation symmetry. In
the following, we focus on eigenstates in the Sz

tot = 0 sector.
In the Sz

tot = 0 subspace, we are thus left with |{x}| = (
N

N/2

)

states, where we only use chains with even N here.
For a cut of size NA on a N -site chain, there are n1 = 2NA

levels in each entanglement spectrum. We can further make
use of Sz

tot,A = ∑NA

r=1 Sz
r to block-diagonalize the entanglement

Hamiltonian. From now on, we focus on the largest block,
e.g., with Sz

tot,A = 0 if NA is even. In this subspace, the entan-

glement spectrum has length n1 = (
NA


NA/2�
)
, where 
NA/2� is

the integer part of NA/2. For training, we additionally leave
out the eigenstates at very low and high energies, which are
known to deviate substantially from the general trend of the
given phase (concretely, we remove the 10% highest and 10%
lowest energy states). After obtaining the reduced density
matrix ρA we need to take the logarithm of its eigenvalues
to arrive at the entanglement spectrum according to Eq. (6),
a procedure, which is prone to numerical errors due to finite
machine precision. Hence, we use only the first half (that is, the
lower-lying half) of each entanglement spectrum for training,
since in both the MBL and ETH regimes, the second half
generically consists only of ρA eigenvalues which are smaller
than 10−16 and therefore cannot contain any information. Note
that the exact size of the part of the entanglement spectrum we
train with is irrelevant, we checked that if we instead choose
1/3 or 2/3 of it the resulting phase diagram does not change.

We choose the activation functions as in Eq. (2), so that the
full action of the network is

f̂ (x) = Softmax[V (3,2) ReLU(V (2,1) x + a(2)) + a(3)],
(7)

where V (2,1) and V (3,2) are n2 × n1 and 2 × n2 weight matrices,
respectively, while a(2) and a(3) are the corresponding n2 and

two-dimensional bias vectors. Here, n1 = (
NA


NA/2�
)
, and n2 is

a free parameter. In fact, we will take n2 to have a relatively
large value, of the order of 103. In doing so, the network will
become prone to overfit. To avoid overfitting, we employ two
strategies (in addition to cross-validation, discussed in Sec. II).

(1) Dropout regularization. In each training step, we only
train with half of the hidden layer neurons, which are randomly
chosen each time, effecting the replacement V (2,1) → PV (2,1)

in Eq. (7), where P projects onto a random subset of size n2/2
of the hidden layer units. This prevents successive build-up
of neuronal weight configurations adjusted to nonuniversial
properties of the training data, and speeds up the convergence
of the testing set error.

(2) Weight decay. During training, weights that have
attained nonzero values at some point, but are no longer
actively contributing to the minimization of the error function,
should decay to zero in subsequent training steps. This can
be achieved by adding a term −μXn on the right-hand side
of Eq. (4), which corresponds to an augmentation of the error
functional (3) by the term μ|X|2, where | · | denotes the l2 norm
of vectors and matrices. Here, we will apply weight decay only
to the hidden layer weights V (2,1), since only this preserves a
certain reparametrization symmetry of the network [51].

With these regularization methods, the number of training
steps does not need to be fine-tuned as long as it is large
enough. Independent of system size we find that a network
with the described architecture classifies samples of testing
data, which have no overlap with the training data, very
successfully with an accuracy of η = 1, where η is the ratio of
correctly identified spectra to all spectra in the testing set. Note
that this is the case independent of whether we train and test
with entanglement spectra obtained from the same or different
disorder realizations.

However, being able to distinguish between the pure
ETH and MBL regimes alone, at h̄ = 0.25 and h̄ = 12.0,
respectively, is not enough to uniquely determine the clas-
sification strategy learned by the neural network. In order
to make the predictions for the transition region reliable,
we introduce confidence optimization. The network should
classify entanglement spectra at intermediate h̄ values with
maximal confidence. Note that this does not require any prior
knowledge of the phase diagram. To implement this criterion,
we add a penalizing term to the error functional, which
quantifies the lack of confidence at intermediate h̄ values. Here,
we simply choose the Shannon entropy applied to the network
output, since the result of the Softmax activation function can
be interpreted as a probability distribution.

The full error functional used here for training the network
to determine the spin chain phase diagram then reads

Cost(f̂ ,f ) = −
∑

x∈TD

2∑

i

fi(x) ln f̂i(x)

−δ
∑

x∈TR

2∑

i

f̂i(x) ln f̂i(x) + μ|V |2, (8)

where TD stands for training data, i.e., entanglement spectra
from h̄ = 0.25 and 12.0, while TR stands for transition region,
i.e., entanglement spectra at intermediate disorder strengths
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0.25 < h̄ < 12.0. We stress once again that the set for TR is
not labeled, meaning we do not make any assumption about
the nature of the states in the TR. In the last two terms
of Eq. (8), δ and μ are further hyperparameters controlling
the importance of confidence optimization and the strength
of weight decay, respectively. We choose suitable values
empirically by requiring optimal minimization of the error
on the testing data. In particular, we observe that as long as
both μ and δ are chosen to be of order 1, their exact values
do not influence the results significantly. For the following
applications, we therefore choose δ = μ = 1, unless otherwise
noted. To understand the influence of the respective terms,
see Fig. 8 in Appendix C, where the phase transition regions
obtained from networks trained with all possible combinations
of δ,μ ∈ {0,1} are compared.

We refer the reader to Appendix B for further information
on the hyperparameters used in Eq. (8) and to Appendix C for
comparison of results for different system sizes. In all cases,
there is no fine-tuning of the network needed. We have checked
that changing the hyperparameters slightly from the values we
used does not induce noticeable variations in the classification
output.

V. RESULTS AND COMPARISON WITH
CONVENTIONAL METHODS

A. Disorder-averaged phase diagram

With the single-hidden-layer neural network described
above, we were able to reproduce the phase diagram of the
model given by Eq. (5). Figure 1 shows the confidence for
the MBL phase averaged over 40 disorder realizations of the
N = 16 chain as a function of the field h̄ and the energy
density. A quantitative determination of the critical value of
h̄ that corresponds to the transition between the ETH and
MBL regimes is in part a question of definition. In order
to define a critical h̄c, there are two quantities that need to
be specified: the threshold for the network confidence, above
which a given entanglement spectrum is classified as being
in the MBL regime, and the fraction of eigenstates that need
to be classified as MBL by lying above this threshold. We
show in Fig. 3(a) the resulting dependence of h̄c on these two
quantities for the N = 16 chain. For example, if we consider
states above a threshold of 90% confidence as being MBL, and
require that half of all spectra belonging to a certain value of
h̄ have to be classified as MBL by this criterion to be at the
transition, we obtain a critical value of about h̄c = 2.8 ± 0.5.
This agrees with the literature [18,36,43].

B. Single disorder realization

To compare the performance with conventional methods
in more detail, we consider a specific disorder realization
instead of averaging over many. Note, however, that we
nevertheless average separately over multiple training runs for
cross-validation as explained in Sec. II. This is also required
from the observation of slight deviations in the classification
of single eigenstates when the network is trained multiple
times, even when this is done with the same input data and
training parameters. These deviations can be traced back to
the randomized weight and bias initialization we use. See

(a) (b)

FIG. 3. (a) Dependence of the critical value h̄c on how confident
the network is required to be in classifying a given entanglement
spectrum as MBL for the average of 40 disorder realizations of
the N = 16 chain. Here, different lines denote different percentages
of MBL spectra that are required in order to classify a given h̄ as
MBL. For the transition value h̄c, we then take the smallest h̄ that
is classified as MBL in this way. The plateaus come from the finite
h̄ resolution �h̄ = 0.125. (b) Correlation of the critical values h̄c

obtained from individual disorder realizations with respective mean
disorder strength 〈|h|〉, averaged over all sites of the N = 16 chain, for
40 individual disorder realizations. The correlation coefficient in this
case is ρ = cov(h̄c,〈|h|〉)/[σ (h̄c)σ (〈|h|〉)] ≈ 0.76, with cov denoting
the covariance, and σ the standard deviation, respectively.

Appendix C for a quantitative analysis of this (on average
negligibly small) deviation.

To obtain a phase diagram as a function of h̄ for a single
disorder realization {hr}, we generate {hr} for h̄ = 1, and then
rescale it as {h̄hr}. Figure 4(a) shows the standard deviation
of the entanglement entropy over 512 consecutive eigenstates
of the N = 18 chain. The entanglement entropy is expected to
be larger in the volume-law entangled ETH regime than in the
area law entangled MBL regime. Thus, in the transition region,
where some entanglement spectra are MBL-like and some are
ETH-like, the entanglement entropy will vary most strongly
from one eigenstate to the next [39–41,43]. The maximum in
the variance can thus be associated with the transition between
the two regimes.

Figure 4(c) shows the number of states classified as
neither ETH nor MBL for each individual eigenstate of the
same system, averaged over 512 consecutive eigenstates. The
sharply defined region where this uncertainty is maximal
can be interpreted as the neural network’s estimate for the
transition between ETH and MBL regimes. Note that to obtain
this figure, we also performed cross-validation over 50 training
runs.

We compare this result to two established criteria to
determine the phase transition, which are well defined for a
single disorder realization (and hence also for a fixed system
size). Figure 4(a) shows the standard deviation of the von
Neumann entanglement entropy. Figure 4(b) shows the
absolute value of the h̄-derivative of the Schmidt gap for the
same system. As the Schmidt gap is small in the ETH phase
and large in the MBL phase, its h̄-derivative is expected to
attain its maximum value at the transition [50]. Comparing
Figs. 4(a)–4(c), we find that the shape and location of the
transition agree very well. At the same time, the neural network
pins down a much sharper transition than the other approaches.
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(a) (b) (c) (d)

FIG. 4. Comparison of energy-resolved single-sample ETH to MBL transition indicators. (a) Standard deviation of the von Neumann
entanglement entropy of a cut of length NA = 9 of the N = 18 chain over 512 consecutive eigenstates. (b) Absolute value of the h̄-derivative
of the Schmidt gap for the same system averaged over 512 consecutive eigenstates. (c) Uncertainty in the classification of entanglement spectra
by a neural network with one hidden layer, including cross-validation over 50 trainings. States classified as MBL with a confidence larger than
0.1 but smaller than 0.9 are assigned a 1, all others a 0. The continuous color range comes from averaging over 512 consecutive eigenstates.
(d) Fine structure comparison of the classification of 100 representative eigenstates taken from the middle of the spectrum of a single sample
of the N = 16 chain (where NA = 8). The upper panel shows the value of Schmidt gap, while the lower panel shows the confidence of the
neural network for classifying a given state as MBL. Note that this fine-structure analysis cannot be performed with the entanglement entropy
standard deviation criterion, as this would require a coarse-graining of eigenstates.

The power of the neural network based method is even
more evident, when the classification of individual eigenstates
is considered. Figure 4(d) shows that the classification of
individual states as belonging to either the ETH or the MBL
regime by the neural network is much clearer than by the
Schmidt gap criterion.

Next, we compare the neural network based transition
characterization with the established method of energy level
statistics (see Sec. III). To identify the energy level statistics,
we use the average ratio r of adjacent energy gaps. For an
ordered spectrum {En; En � En+1}, the ratio of adjacent gaps
is defined as

rn = min(En − En−1,En+1 − En)

max(En − En−1,En+1 − En)
. (9)

Each energy level distribution leads to a given average ratio r

of these rn. The comparison between r and the neural network
based transition is shown in Fig. 5. Here it becomes clear
that confidence optimization, as represented by an additional
term in the cost function [corresponding to δ = 1 in Eq. (8)],
which is designed to favor networks which confidently classify
transition region states, makes physical sense and is essential
to make contact with established methods.

We note that by refining and combining conventional
methods [18,36,43,49] the same or better classification success
can be achieved. However, here we want to point out that
there is no equally simple method, assuming as little prior
knowledge, that performs equally well as the machine learning
based approach. This approach is very basic: we use a single
hidden layer, typical neural activation functions, and apply
standard regularization techniques. The only nontrivial input
we added to this standard setup is cost optimization, which is
effected by a nonzero δ in Eq. (8).

We observe that the location of the transition varies
substantially with different disorder realizations sampled from
the same distribution characterized by some fixed h̄. The main
reason for this is that even with fixed h̄ per site of the chain,
the mean strength of disorder can still fluctuate. As can be

seen in Fig. 3(b), the disorder strength averaged over all sites
〈|h|〉 = 1

N

∑N
r=1 |hr| is directly correlated with the inverse of

the field corresponding to the transition, 1/h̄c. We thus identify
it as a key ingredient for the dependence of the transition on
the disorder realization, even though other properties of the
disorder realization than the average absolute field value may
also be correlated with the location of the transition.

FIG. 5. Comparison of ETH to MBL transition indicators for
a single realization of the disorder of the N = 18 chain, averaged
over energy density. The arrows indicate the vertical axis each curve
refers to. The reduced density matrix is built for NA = 9. Here, the
ratio r of adjacent energy gaps is colored in black. For the GOE
describing the ETH regime, we have r  0.530. For the Poisson
level statistics characterizing the MBL regime, we have r  0.386.
We compare r to the energy-average of the confidence with which
entanglement spectra belonging to a given value of h̄ are classified
as ETH, obtained from two neural network (NN) instances: one
with the confidence-enhancing term we added to the network’s cost
function, corresponding to δ = 1 in Eq. (8), the other without it,
corresponding to δ = 0, colored in blue and red, respectively. The
large deviation in the classification of the network trained with δ = 0
from the established criterion of energy level statistics underlines the
importance of confidence optimization. Note also that the transition
is sharper for the neural network based approach with δ = 1.
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FIG. 6. Dependence of the classification of eigenstates for a
single disorder realization of the N = 18 chain on the location of
the entanglement cut. (a) Close-up of the h̄-dependent classification
of 200 eigenstates taken from the middle of the spectrum for
entanglement cuts ranging from NA = 6 up to NA = 12. For each
value of h̄, a subplot is shown whose horizontal axis corresponds to
these seven cuts. Blue (red) states were classified with confidence
> 90% as ETH (MBL). The remaining states are marked in white.
(b) Survey of 10 000 eigenstates from the middle of the spectrum
which have been classified separately for all seven cuts. The blue
(red) curve is the fraction of eigenstates that were classified with
confidence > 90% as ETH (MBL) for all cuts. The black curve is
the fraction of states that are classified with confidence > 90% as
ETH for at least one cut and with the same confidence as MBL for at
least one cut, i.e., states, which are spatially inhomogeneous in their
character.

C. Spatial structure of individual eigenstates

The neural network classification of individual eigenstates
based on the entanglement spectrum further allows to analyze
the local structure of these states, by varying the location of the
entanglement cut. We compute for a fixed disorder realization
the entanglement spectra of each eigenstate for seven consec-
utive cuts in the middle of the N = 18 chain as a function of h̄.
All of these entanglement spectra are subsequently classified
using the neural network. We do not perform cross-validation
as we will only include confidently classified spectra in the
subsequent analysis. Due to the variation of the length of the
entanglement spectra with the cut location, a new training of
the network is necessary for each cut.

Figure 6(a) shows the entanglement cut-resolved classifi-
cation results for 200 consecutive eigenstates as a function
of h̄, by varying the cut for the entanglement spectrum to lie
on seven consecutive bonds. The resulting locally resolved
classification of eigenstates displays a remarkable asymmetry
between approaching the transition from the ETH or from
the MBL side; first, we consider the few states that are
MBL classified for some entanglement cut deep in the ETH
regime. We observe that a substantial fraction of them was
classified as MBL consistently across all seven cuts. This is
in sharp contrast with the few states that are ETH classified
for some entanglement cut deep in the MBL regime. Only
a tiny fraction of these states is classified as ETH across all
seven cuts simultaneously. Our results point to an asymmetry
in the evolution of the local structure of eigenstates when the
transition is approached from the MBL or ETH side.

Using this capability of resolving the state character locally,
we can thus confirm the following hypothesis about the

(a) (b)

FIG. 7. Dreaming of entanglement spectra for a single disorder
realization of the N = 18 chain (with NA = 9). An entry on the
horizontal axis denotes the index of the respective entanglement
spectrum eigenvalue. (a) 140 typical entanglement spectra of the
pure ETH (blue), MBL (red), and transition (black) regime. The
trained network assigns a confidence vector (1,0) to the ETH spectra,
and (0,1) to the MBL spectra. The transition regime entanglement
spectra have been chosen such that the network yields an output lying
between (0.4,0.6) and (0.6,0.4) on them. (b) Result after 200 000
steps of the dreaming gradient descent, described in the main text,
when applied on 20 of the same transition region entanglement
spectra. Note the difference in scale, which indicates that the neural
network learns relative rather than absolute features of the training
data. The network correctly picks up the power-law structure of the
entanglement spectrum in the MBL phase, as can be deduced from
its nearly linear slope in this logarithmic plot.

evolution of the local structure of the quantum states across
the transition [40,46–48]. As the transition is approached
from the MBL side, ETH-like regions emerge in rare places
where the random field variations are small. These are the
first places where quantum fluctuations will dominate over the
classical ones induced by the random field. As the transition is
approached, these regions grow in size and will eventually be
large enough to serve as a bath for the entire system. At this
point, the state becomes entirely ETH-like. We make these
observations quantitative in Fig. 6(b), where the fraction of
pure ETH states, pure MBL states, and of states with mixed
character is plotted as a function of h̄.

We remark that for the above analysis to be valid, it is
crucial that we are considering spin chains with open boundary
conditions. Only in this case does an entanglement cut that
separates the chain in two subsystems reveal purely local
information about the nature of the many-body eigenstate.
In contrast, if the chain was studied with periodic boundary
conditions, a bipartitioning of the system requires two cuts
and the entanglement spectrum would convolute information
about the structure near both cuts at distant locations.

D. What the network has learned: dreaming

Taken collectively, the above results on the disorder-
averaged phase diagram as well as about the transition for
individual disorder realizations provide strong evidence that
the neural network performs the classification operation for
which it was designed. To gain further insights into the
network operation and to rule out that any pathological
behavior emerges, we analyze it with a method called creation
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by refinement [52], which has recently gained widespread
attention under the term dreaming [53] in the application to
image recognition. The method is, however, more general than
this, and here we use it on entanglement spectra. For that, the
trained network is presented with randomly initialized input
data x for which it provides an output y. Subsequently, the
input data is modified until the output y equals a desired entry
from the target set {(1,0),(0,1)}, for example (0,1) for being
classified as MBL. When this procedure is repeated many
times, the obtained collection of input data x reveals which
properties of the training data have been learned by the network
as being characteristic for an MBL entanglement spectrum.

We perform the dreaming algorithm using gradient descent
to optimize the input data for a desired network output, using
the cross-entropy between the desired and the actual output
as a cost function. Instead of using entirely random input data
to initialize the dreaming, we randomly choose entanglement
spectra that have not been classified confidently as either MBL
or ETH by the network (more precisely, we choose spectra
for which the confidence of ETH and MBL is between 40%
and 60%). These input spectra are then optimized toward
either ETH or MBL. To obtain comparable and physical
entanglement spectra, we further enforce the constraints that (i)
the eigenvalues of the reduced density matrix be nonnegative
and (ii) the absolute value of their logarithm be ordered from
smallest to largest. Enforcing these constraints is necessary,
because we cannot expect that the network has “learned” any
of them, and not restrictive, as any physical entanglement
spectrum can be represented this way. Note that we do not
require that the eigenvalues of the reduced density matrix sum
up to 1, since this property of the training data was lost when
restricting to the first half of the entanglement spectrum as
described at the beginning of Sec. IV.

To keep the dreaming algorithm from merely capturing
structure specific to one training instance of the network, we
average over 40 distinct training instances. For each dreaming,
we use 2 × 105 steps with a gradient descent stepsize of 10−4.
The results are shown in Fig. 7(b) where a comparison with
true entanglement spectra from deep in the MBL and deep
in the ETH phase is made. We observe from the resemblance
between Figs. 7(a) and 7(b) that the neural network has indeed
learned the relative characteristic shapes of typical ETH and
MBL entanglement spectra, in particular the power-law nature
of the entanglement spectra in the MBL phase [37], but
without becoming sensitive to their exact absolute magnitudes.
This can be understood by noting that it was only trained to
distinguish one phase from the other, and not to individually
characterize the respective phases on their own.

VI. SUMMARY

We trained an artificial neural network with a single hidden
layer on entanglement spectra of the disordered Heisenberg
chain to identify the ETH and MBL regimes of this model,
and subsequently applied the network to entanglement spectra
belonging to states that lie between these two regimes. Even
though the network was not trained with entanglement spectra
near the phase transition, the phase diagram obtained is
in good agreement with previous studies. By adapting the
dreaming technique, we were able to show that the network

correctly learns the power-law entanglement spectrum of the
MBL phase. Our method is uncontrolled, and is therefore less
qualified to deduce a quantitative value for the critical disorder
strength, for example. However, it has the advantage of being
simpler than conventional methods, and in addition provides
the cleanest characterization of the transition in the case of
single eigenstates of a single disorder realization.

The structure and operation of the network that we
presented, including features such as confidence optimization
and dreaming, is broadly applicable to classify other phases
of matter based on their entanglement spectrum and likely
also other correlation functions as input data. We conclude
that artificial neural networks, when used correctly, constitute
an efficient and unbiased tool for classifying phases of matter
from numerical data.
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APPENDIX A: TRAINING WITH OTHER KINDS
OF INPUT DATA

In the main text, we have focused on the spectrum of He,
defined by Eq. (6), as input data for our neural network. In this
appendix, we report our observations when training instead
with (a) the spectrum of the reduced density matrix ρA and
(b) the differences of the He eigenvalues. The motivation for
input data of type (a) is that diagonalizing ρA, instead of its
logarithm, requires less preprocessing, while the motivation
for (b) is that the differences of the He eigenvalues have been
shown [25,36] to be statistically distributed in a unique fashion
depending on whether the regime is MBL or ETH.

In the case of (a), we again are able to train the same
network as described in the main text, Eq. (7), to an accuracy
of η = 1. An analysis of the weight distribution of the hidden
layer after training shows that for distinguishing between MBL
and ETH, the trained network only takes note of the first
few input neurons, which correspond to the lowest entan-
glement eigenvalues. In this case, training has dynamically
rediscovered a well known criterion for distinguishing an
almost perfectly mixed state (such as a typical ETH state)
from a nearly pure state (such as a typical MBL state):
the “Schmidt gap” described in Sec. III.

For input data of kind (b), we find that the network described
by Eq. (7) does not converge to η = 1 in any reasonable
number of training steps. However, when increasing its
complexity by introducing a second hidden layer of neurons,
we can again easily achieve η = 1.

In both cases, (a) and (b), the phase diagram is in quantita-
tive agreement with Fig. 1, as long as both regularization and
confidence optimization terms are taken into account in the
cost function (8). We note that when we drop either of these
additions to the cross entropy, the phase diagram obtained
after training the respective network to distinguish MBL and
ETH with η = 1 becomes dependent on the type of input data.
This indicates that the naive choice of cost function is not
restrictive enough to uniquely determine the neural network
parameters. Instead, it has a manifold of minima which yield

245134-8



PROBING MANY-BODY LOCALIZATION WITH NEURAL . . . PHYSICAL REVIEW B 95, 245134 (2017)

δ = 0, μ = 1δ = 1, μ = 1 δ = 1, μ = 0 δ = 0, μ = 0(a) (b) (c) (d)

FIG. 8. Comparison of transition regions obtained from neural networks that were trained with different cost functions, corresponding to a
different choice of the parameters δ and μ in Eq. (8), for a single sample of the N = 18 chain with NA = 9. Here we show the classification
uncertainty as defined below Fig. 4(c), i.e., including cross-validation over 50 trainings, for different cost functions. (a) The standard classification
result with both regularization and confidence-enhancing terms in the cost function. (b) Without confidence optimization, the transition region
is detected at qualitatively larger values of h̄. From this observation alone we cannot decide which of the two networks corresponding to
δ ∈ {0,1} should be preferred, since both distinguish the pure ETH and MBL regions with η = 1. However, Fig. 5 clearly shows that only the
cost function with δ = 1 faithfully recovers the transition obtained from a level statistics analysis. In addition, as discussed in Appendix A, when
training with different kinds of input data the transition region stays unchanged only when δ = 1, while for δ = 0 the network classification
becomes inconsistent. (c) and (d) Without proper regularization, the network performance becomes pathological.

inequivalent phase diagrams. This observation reaffirms our
choice of cost function, and in particular motivates the extra
criterion of confidence optimization we added to encourage
a high-confidence classification of transition states, i.e., the
second term in Eq. (8).

APPENDIX B: HYPERPARAMETERS
AND NETWORK DETAILS

All neural networks used in this work were implemented
in Python using Google’s TENSORFLOW [54]. In the main
text, it was noted that a network with a large number of hidden
layer units needs to be regularized appropriately in order to
avoid overfitting. The exact number of hidden layer units is,
however, somewhat arbitrary as long as it is large enough with
respect to the number of input neurons. For all system sizes
considered, with entanglement spectra inputs at most of size
n1 = (

NA


NA/2�
)|NA=9 = 126, corresponding to a half-cut of the

N = 18 chain, we chose n2 = 1024 units for the single hidden
layer of our network.

During training, we used an empirically determined step-
size of 10−4 for gradient descent on weights initialized around
0 with a standard deviation of 0.1. Furthermore, we chose the
regularization and confidence optimization parameters μ = 1
and δ = 1 in Eq. (7), respectively. We show in Fig. 8 that if
either confidence optimization or weight decay is ignored, the
classification outcome is not consistent with the results from
other methods (see also Fig. 5 in the main text).

For all calculations, we removed the lowest and highest
10% of all eigenvalues for the dataset corresponding to the
pure ETH and MBL regimes, which is then subdivided into
training and testing set for cross-validation, and train with
randomly chosen batches of 100 elements in each step. We use
the same batch size for the entanglement spectra coming from
transition region states, which are required by the confidence
optimization term we added to the cost function. We use
between 3000 and 4000 training steps.

APPENDIX C: EMPIRICAL OBSERVATIONS ON THE
NETWORK PERFORMANCE

In Sec. V, we noted that the neural network’s classification
of individual eigenstates for a single disorder realization is not
necessarily consistent over multiple training and evaluation
runs, even when all hyperparameters and input data are left
unchanged. This stems mainly from the random initialization
of the weight and bias vectors, not from the randomly chosen
training and testing sets. Here we quantify this inconsistency

(a) (b)

FIG. 9. Dependence of the classification of states on different
training runs. For each plot, the entanglement spectra for a system
with N = 18 sites with a single disorder realization were trained with
50 times, each time with randomly initialized network parameters and
a random choice of training data. The resulting classifications of the
individual eigenstates for each h̄ are then compared pairwise and the
comparison is averaged over all pairings of trainings. We consider
three categories of states: (i) classified with confidence > 90% as
MBL, (ii) classified with confidence > 90% as ETH, (iii) others, not
confidently classified. (a) Fraction of states that switch between any
of the three categories (i)–(iii) to any other between two trainings. (b)
Fraction of states that switch from category (i) to category (ii) (i.e.,
from confidently MBL to confidently ETH) or vice versa between two
trainings. Note that the value of h̄ at which these fractions assume
their maximal value provides one method to determine the critical
transition location h̄c for this particular disorder realization.
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(a) (b) (c) (d)N = 12 N = 14 N = 16 N = 18

FIG. 10. Finite-size dependence of the transition region for different single disorder realizations of the N = 12,14,16,18 chains (note that
we have on purpose used a different disorder realization for N = 18 than the one used in Fig. 4 to show that the overall shape of the transition
region is sample independent). Each plot shows the transition region as defined below Fig. 4(c) for a network trained on entanglement spectra
of a cut with NA = N/2. Note that the h̄ step size for each plot differs, and is given by �h̄ = 0.01,0.05,0.125,0.125, respectively. For each N ,
we have averaged the result over an increasing number of eigenstates in order to arrive at a resolution suited for the human eye in a controllable
way. Only for N = 16 and 18, the data are averaged over the same number of eigenstates, in order to demonstrate that the apparent improvement
of the sharpness of the transition is not merely a result of a larger number of states that have been averaged over. Note also that each of (a)–(d)
necessarily represent different disorder realizations and hence the value of h̄ at which the transition occurs should not be compared between
them.

in classification for the case of a single-hidden layer network,
given by Eq. (7). We trained with entanglement spectra from
a single disorder realization of the N = 18 chain in 3000
training steps for 50 times. To distinguish between deviations
in confidence and deviations in classification, we define an
MBL state as a state that is classified as MBL with a confidence
of over 90%, and likewise an ETH state as a state which
is classified as MBL with a confidence of less than 10%
(remember that the confidences for MBL and ETH have to
add up to 100% since we use a Softmax output layer). We
then train 50 times, and consider all possible pairings of the
resulting 50 phase diagrams. It turns out that the fraction of
states that change their classification from ETH in one member

of a pair to MBL in the other, or vice versa, averages to 0.008,
while the fraction of states that were classified as either MBL or
ETH in one member of a pair, but are not confidently classified
as either in the other, averages to 0.07. In Fig. 9, we present
an h̄-resolved analysis.

We also compare the network performance when trained on
entanglement spectra generated from spin chains of different
length, as presented in Fig. 10. Here we observe that the
transition seems to become sharper for larger system sizes,
as expected [40]. However, one has to keep in mind that
each panel of Fig. 10 uses a different disorder realization and
hence realization-specific features and those stemming from
the change in system size both appear in these plots.
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