522 research outputs found

    Grassland management effects on earthworm communities under ambient and future climatic conditions

    Get PDF
    Abstract The impacts of climate change on biodiversity can be modulated by other changing environmental conditions, e.g. induced by land-use change. The potential interactive effects of climate change and land use have rarely been studied for soil organisms. To test the effects of changing climatic conditions and land use on soil invertebrates, we examined earthworm communities across different seasons in different grassland-use types (intensively managed grassland, extensively managed meadow, and extensively managed sheep pasture).We predicted that the strength of climate change effects would vary with season and land use. Overall, extracted earthworm populations showed the strongest variations in response to the season, indicating major differences in activity patterns and extraction efficiency, while climate change and different grassland-use types had fewer and weaker effects. Future climate, characterized by slightly higher precipitation in spring and fall but a strong reduction during the summer, had positive effects on the abundance of extracted adult earthworms in spring but then reduced the abundance of active earthworms across the remaining seasons. In contrast, the total biomass of juveniles tended to be consistently lower under future climate conditions. Earthworm species responded differently to the climate change and different grassland management types, and these species-specific responses further varied strongly across seasons. Intensive grassland management had negative effects, due to plant community composition, while sheep grazing favoured earthworm populations, due to dung deposition. There were only limited interactive effects between climate and land use, which thus did not support our main hypothesis. Nevertheless, these results highlight the complex and context-dependent responses of earthworm communities and activity patterns to climate change, with potential consequences for long-term population dynamics and crucial ecosystem functions. This article is protected by copyright. All rights reserved.Peer reviewe

    Illuminating biodiversity changes in the ‘Black Box’

    Get PDF
    Soil is often described as a ‘black box’, as surprisingly little is known about the high levels of biodiversity that reside there. For aboveground organisms, we have good knowledge of the distribution of the species and how they might change under future human impacts. Yet despite the fact that soil organisms provide a wide variety of ecosystem functions, we have very limited knowledge of their distribution and how their diversity might change in the future. In order to create accurate and generalisable models of biodiversity, the underlying data need to be representative of the entire globe. Yet even with our recently compiled global earthworm dataset of over 11000 sites, there are gaps across large regions. These gaps are consistent across many other datasets of both above- and belowground diversity. In order to fill the gaps we propose a sampling network (SoilFaUNa), to create a comprehensive database of soil macrofauna diversity and soil functions (e.g. decomposition rates). Building on the existing dataset of earthworm diversity and early data from the SoilFaUNa project, we will investigate changes in earthworm diversity. From our current work, we know that both climate and land use are main drivers in predicting earthworm diversity, but both will change under future scenarios and may alter ecosystem functions. We will, using space-for-time substitution models, estimate how earthworm diversity and their functions might change in the future, modelling earthworm diversity as a function of climate, land use and soil properties and predicting based on future scenarios. Previous studies of aboveground diversity changes over time using time-series analysis have found no-net-loss in richness, but analyses have criticisms. We aim to use time-series data on earthworms to move this debate forward, by using data and statistical methods that would address the criticisms, whilst increasing our knowledge on this understudied soil group. Field experiments and micro-/mesocosm experiments have been used to investigate the link between a number of soil organisms and ecosystem functions under few environmental conditions. Meta-analyses, which can produce generalisable results can only answer questions for which there are data. Thus, we have been lacking on information on the link between the entire community of soil fauna and ecosystem functions and impact of changes to the soil fauna community across environmental contexts. Using data collected from the SoilFaUNa project, we will, for the first time, synthesise globally distributed specifically-sampled data to model how changes in the community composition of soil macrofauna (due to changes in land use, climate or soil properties) impact the ecosystem functions in the soil

    Moderate Plant–Soil Feedbacks Have Small Effects on the Biodiversity–Productivity Relationship: A Field Experiment

    Get PDF
    Plant–soil feedback (PSF) has gained attention as a mechanism promoting plant growth and coexistence. However, most PSF research has measured monoculture growth in greenhouse conditions. Translating PSFs into effects on plant growth in field communities remains an important frontier for PSF research. Using a 4-year, factorial field experiment in Jena, Germany, we measured the growth of nine grassland species on soils conditioned by each of the target species (i.e., 72 PSFs). Plant community models were parameterized with or without these PSF effects, and model predictions were compared to plant biomass production in diversity–productivity experiments. Plants created soils that changed subsequent plant biomass by 40%. However, because they were both positive and negative, the average PSF effect was 14% less growth on “home” than on “away” soils. Nine-species plant communities produced 29 to 37% more biomass for polycultures than for monocultures due primarily to selection effects. With or without PSF, plant community models predicted 28%–29% more biomass for polycultures than for monocultures, again due primarily to selection effects. Synthesis: Despite causing 40% changes in plant biomass, PSFs had little effect on model predictions of plant community biomass across a range of species richness. While somewhat surprising, a lack of a PSF effect was appropriate in this site because species richness effects in this study were caused by selection effects and not complementarity effects (PSFs are a complementarity mechanism). Our plant community models helped us describe several reasons that even large PSF may not affect plant productivity. Notably, we found that dominant species demonstrated small PSF, suggesting there may be selective pressure for plants to create neutral PSF. Broadly, testing PSFs in plant communities in field conditions provided a more realistic understanding of how PSFs affect plant growth in communities in the context of other species traits

    Decomposer diversity and identity influence plant diversity effects on ecosystem functioning

    Get PDF
    Plant productivity and other ecosystem functions often increase with plant diversity at a local scale. Alongside various plant-centered explanations for this pattern, there is accumulating evidence that multi-trophic interactions shape this relationship. Here, we investigated for the first time if plant diversity effects on ecosystem functioning are mediated or driven by decomposer animal diversity and identity using a double-diversity microcosm experiment. We show that many ecosystem processes and ecosystem multifunctionality (herbaceous shoot biomass production, litter removal, and N uptake) were affected by both plant and decomposer diversity, with ecosystem process rates often being maximal at intermediate to high plant and decomposer diversity and minimal at both low plant and decomposer diversity. Decomposers relaxed interspecific plant competition by enlarging chemical (increased N uptake and surface-litter decomposition) and spatial (increasing deep-root biomass) habitat space and by promoting plant complementarity. Anecic earthworms and isopods functioned as key decomposers; although decomposer diversity effects did not solely rely on these two decomposer species, positive plant net biodiversity and complementarity effects only occurred in the absence of isopods and the presence of anecic earthworms. Using a structural equation model, we explained 76% of the variance in plant complementarity, identified direct and indirect effect paths, and showed that the presence of key decomposers accounted for approximately three-quarters of the explained variance. We conclude that decomposer animals have been underappreciated as contributing agents of plant diversity–ecosystem functioning relationships. Elevated decomposer performance at high plant diversity found in previous experiments likely positively feeds back to plant performance, thus contributing to the positive relationship between plant diversity and ecosystem functioning

    Plant diversity effects on plant longevity and their relationships to population stability in experimental grasslands

    Get PDF
    Identifying to what degree inherent characteristics of plant species and their variation in response to their environment regulate the temporal stability of plant populations is important to understand patterns of species coexistence and the stability of ecosystems. Longevity is a key characteristic of plant life history and an important component of demographic storage, but age is usually unknown for herbaceous species. In a 12-year-old biodiversity experiment (Jena Experiment) comprising 80 grassland communities with six levels of plant species richness (1, 2, 4, 8, 16 and 60 species) and four levels of functional groups richness (1, 2, 3 and 4 functional groups), we studied populations of 38 dicotyledonous forb species (N = 1,683 plant individuals). The sampled individuals represented three plant functional groups (legumes, small herbs and tall herbs) and two different growth forms (species with long-lived primary roots and clonal species with rhizomes/stolons). We assessed the age of plant individuals by means of growth ring analysis and related the age of plant populations to their temporal stability in terms of peak biomass production. On average, plant species richness did not affect the mean age of the populations or the maximum age of individuals found in a population. Age of herbs with taproots increased and age of herbs with clonal growth decreased with increasing species richness, cancelling out each other when growth forms were analysed together. Mean population age was lowest for small herbs and highest for tall herbs, while legumes had an intermediate population age. Herbs with a taproot were on average older than herbs with a rhizome. Across all species-richness levels, populations with older individuals were more stable in terms of biomass production over time. Synthesis. Our study shows for the first time across multiple species that the longevity of forbs is affected by the diversity of the surrounding plant community, and that plant longevity as an important component of demographic storage increases the temporal stability of populations of grassland forb species
    • 

    corecore