9 research outputs found

    Anodal tDCS modulates specific processing codes during conflict monitoring associated with superior and middle frontal cortices

    No full text
    Conflict monitoring processes are central for cognitive control. Neurophysiological correlates of conflict monitoring (i.e. the N2 ERP) likely represent a mixture of different cognitive processes. Based on theoretical considerations, we hypothesized that effects of anodal tDCS (atDCS) in superior frontal areas affect specific subprocesses in neurophysiological activity during conflict monitoring. To investigate this, young healthy adults performed a Simon task while EEG was recorded. atDCS and sham tDCS were applied in a single-blind, cross-over study design. Using temporal signal decomposition in combination with source localization analyses, we demonstrated that atDCS effects on cognitive control are very specific: the detrimental effect of atDCS on response speed was largest in case of response conflicts. This however only showed in aspects of the decomposed N2 component, reflecting stimulus-response translation processes. In contrast to this, stimulus-related aspects of the N2 as well as purely response-related processes were not modulated by atDCS. EEG source localization analyses revealed that the effect was likely driven by activity modulations in the superior frontal areas, including the supplementary motor cortex (BA6), as well as middle frontal (BA9) and medial frontal areas (BA32). atDCS did not modulate effects of proprioceptive information on hand position, even though this aspect is known to be processed within the same brain areas. Physiological effects of atDCS likely modulate specific aspects of information processing during cognitive control

    The neurophysiology of continuous action monitoring

    No full text
    Summary: Monitoring actions is essential for goal-directed behavior. However, as opposed to short-lasting, and regularly reinstating monitoring functions, the neural processes underlying continuous action monitoring are poorly understood. We investigate this using a pursuit-tracking paradigm. We show that beta band activity likely maintains the sensorimotor program, while theta and alpha bands probably support attentional sampling and information gating, respectively. Alpha and beta band activity are most relevant during the initial tracking period, when sensorimotor calibrations are most intense. Theta band shifts from parietal to frontal cortices throughout tracking, likely reflecting a shift in the functional relevance from attentional sampling to action monitoring. This study shows that resource allocation mechanisms in prefrontal areas and stimulus-response mapping processes in the parietal cortex are crucial for adapting sensorimotor processes. It fills a knowledge gap in understanding the neural processes underlying action monitoring and suggests new directions for examining sensorimotor integration in more naturalistic experiments

    Targeting sleep physiology to modulate glymphatic brain clearance

    No full text
    Sleep has been postulated to play an important role in the removal of potentially neurotoxic molecules, such as amyloid-β, from the brain via the glymphatic system. Disturbed sleep, on the other hand, may contribute to accumulation of neurotoxins in brain tissue, ultimately leading to neuronal death. A bidirectional relationship has been proposed between impaired sleep and neurodegenerative processes, which start years before the onset of clinical symptoms associated with conditions like Alzheimer’s and Parkinson’s disease. Given their heavy burden on society, it is imperative to develop interventions that promote efficient brain clearance and thereby could aid in preventing or slowing down neurodegeneration. In this review, we explore whether the metabolic clearance function of sleep can be enhanced through sensory (e.g., auditory, vestibular) or transcranial (e.g., magnetic, ultrasound, infra-red light) stimulation, as well as pharmacological (e.g., antiepileptics) and behavioral (e.g., sleeping position, physical exercise, cognitive intervention) modulation of sleep physiology. A particular focus will be placed on strategies to enhance slow-wave activity during non-rapid eye movement sleep as a driver of glymphatic brain clearance. Overall, the review provides a comprehensive overview on the potential preventative and therapeutic applications of sleep interventions in combating neurodegeneration, cognitive decline, and dementia

    A studyforrest extension, simultaneous fMRI and eye gaze recordings during prolonged natural stimulation

    Get PDF
    Here we present an update of the studyforrest (http://studyforrest.org) dataset that complements the previously released functional magnetic resonance imaging (fMRI) data for natural language processing with a new two-hour 3 Tesla fMRI acquisition while 15 of the original participants were shown an audio-visual version of the stimulus motion picture. We demonstrate with two validation analyses that these new data support modeling specific properties of the complex natural stimulus, as well as a substantial within-subject BOLD response congruency in brain areas related to the processing of auditory inputs, speech, and narrative when compared to the existing fMRI data for audio-only stimulation. In addition, we provide participants' eye gaze location as recorded simultaneously with fMRI, and an additional sample of 15 control participants whose eye gaze trajectories for the entire movie were recorded in a lab setting-to enable studies on attentional processes and comparative investigations on the potential impact of the stimulation setting on these processes
    corecore