54 research outputs found

    H2 in the interstitial channels of nanotube bundles

    Get PDF
    The equation of state of H2 adsorbed in the interstitial channels of a carbon nanotube bundle has been calculated using the diffusion Monte Carlo method. The possibility of a lattice dilation, induced by H2 adsorption, has been analyzed by modeling the cohesion energy of the bundle. The influence of factors like the interatomic potentials, the nanotube radius and the geometry of the channel on the bundle swelling is systematically analyzed. The most critical input is proved to be the C-H2 potential. Using the same model than in planar graphite, which is expected to be also accurate in nanotubes, the dilation is observed to be smaller than in previous estimations or even inexistent. H2 is highly unidimensional near the equilibrium density, the radial degree of freedom appearing progressively at higher densities.Comment: Accepted for publication in PR

    Structure and Vibrations of the Vicinal Copper (211) Surface

    Full text link
    We report a first principles theoretical study of the surface relaxation and lattice dynamics of the Cu(211) surface using the plane wave pseudopotential method. We find large atomic relaxations for the first several atomic layers near the step edges on this surface, and a substantial step-induced renormalization of the surface harmonic force constants. We use the results to study the harmonic fluctuations around the equilibrium structure and find three new step-derived features in the zone center vibrational spectrum. Comparison of these results with previous theoretical work and weith experimental studies using inelastic He scattering are reported.Comment: 6 Pages RevTex, 7 Figures in Postscrip

    Anisotropic Condensation of Helium in Nanotube Bundles

    Full text link
    Helium atoms are strongly attracted to the interstitial channels within a bundle of carbon nanotubes. The strong corrugation of the axial potential within a channel can produce a lattice gas system where the weak mutual attraction between atoms in neighboring channels of a bundle induces condensation into a remarkably anisotropic phase with very low binding energy. We estimate the binding energy and critical temperature for 4He in this novel quasi-one-dimensional condensed state. At low temperatures, the specific heat of the adsorbate phase (fewer than 2% of the total number of atoms) greatly exceeds that of the host material.Comment: 8 pages, 3 figures, submitted to PRL (corrected typo in abstract

    Phonon and plasmon excitation in inelastic electron tunneling spectroscopy of graphite

    Get PDF
    The inelastic electron tunneling spectrum (IETS)of highly oriented pyrolitic graphite (HOPG) has been measured with scanning tunneling spectroscopy (STS) at 6K. The observed spectral features are in very good agreement with the vibrational density of states (vDOS) of graphite calculated from first principles. We discuss the enhancement of certain phonon modes by phonon-assisted tunneling in STS based on the restrictions imposed by the electronic structure of graphite. We also demonstrate for the first time the local excitation of surface-plasmons in IETS which are detected at an energy of 40 meV.Comment: PRB rapid communication, submitte

    Theory of commensurable magnetic structures in holmium

    Full text link
    The tendency for the period of the helically ordered moments in holmium to lock into values which are commensurable with the lattice is studied theoretically as a function of temperature and magnetic field. The commensurable effects are derived in the mean-field approximation from numerical calculations of the free energy of various commensurable structures, and the results are compared with the extensive experimental evidence collected during the last ten years on the magnetic structures in holmium. In general the stability of the different commensurable structures is found to be in accord with the experiments, except for the tau=5/18 structure observed a few degrees below T_N in a b-axis field. The trigonal coupling recently detected in holmium is found to be the interaction required to explain the increased stability of the tau=1/5 structure around 42 K, and of the tau=1/4 structure around 96 K, when a field is applied along the c-axis.Comment: REVTEX, 31 pages, 7 postscript figure

    Simulation of dimensionality effects in thermal transport

    Full text link
    The discovery of nanostructures and the development of growth and fabrication techniques of one- and two-dimensional materials provide the possibility to probe experimentally heat transport in low-dimensional systems. Nevertheless measuring the thermal conductivity of these systems is extremely challenging and subject to large uncertainties, thus hindering the chance for a direct comparison between experiments and statistical physics models. Atomistic simulations of realistic nanostructures provide the ideal bridge between abstract models and experiments. After briefly introducing the state of the art of heat transport measurement in nanostructures, and numerical techniques to simulate realistic systems at atomistic level, we review the contribution of lattice dynamics and molecular dynamics simulation to understanding nanoscale thermal transport in systems with reduced dimensionality. We focus on the effect of dimensionality in determining the phononic properties of carbon and semiconducting nanostructures, specifically considering the cases of carbon nanotubes, graphene and of silicon nanowires and ultra-thin membranes, underlying analogies and differences with abstract lattice models.Comment: 30 pages, 21 figures. Review paper, to appear in the Springer Lecture Notes in Physics volume "Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer" (S. Lepri ed.
    corecore