74 research outputs found

    Towards flexible organic thin film transistors (OTFTs) for biosensing

    Get PDF
    We have studied parylene-N and parylene-C for their use as substrates and gate dielectrics in OTFTs. Parylene-N films with a thickness of 300 nm show the required dielectric properties, as verified by breakthrough-voltage measurements. The surface roughness measured for 300 nm thick parylene-N films is 4-5 nm. However, initial growth of parylene depends on the subjacent surface. This results in different thicknesses on Au electrodes and substrate materials for thin films. Capping of micropatterned Au-electrodes with a thin Al layer via lift-off results in homogenous parylene film thickness on the whole sample surface. OTFTs are fabricated on glass with parylene-N as a gate dielectric and pentacene as a semiconductor. The electrodes are patterned by photolithography enabling micrometer sized features. The contact resistance is extracted by variation of the channel length. Modification of the parylene dielectric layer surface by plasma treatment with oxygen after deposition allows shifting of the threshold voltage to more positive values, however at the cost of increasing hysteresis. OTFTs fabricated on thin parylene-C films can be peeled off and could result in flexible devices employing parylene-C foil as a substrate. For a foil thickness of 3-4 mu m, operational devices can be bent down to radii less than 1 mm, e.g. in the range of cannulas. Operation of such OTFTs with parylene-C as a gate dielectric in liquids is demonstrated. The OTFT current can be modulated by the potential in the electrolyte as well as by the bottom gate potential. This allows for application of such OTFTs as sensors in medical devices

    Ammonia sensing for enzymatic urea detection using organic field effect transistors and a semipermeable membrane

    Get PDF
    Organic Field Effect Transistors (OFETs) are used to measure ammonia in solution via ammonia diffusion into the OFET channel. An increase in ammonia concentrations results in a decrease in transistor currents. The regeneration of the OFET current after ammonia uptake is slow, which allows us to read out the maximum ammonia dose which was applied. A 100 nm parylene-C layer serves as a semipermeable top gate dielectric. The parylene layer is functionalized with the covalently attached enzyme urease. The enzyme catalyses the hydrolysis of urea to ammonia and carbon dioxide, i.e. urea can be detected via its hydrolysis product ammonia. The sensitivity covers a range of physiological concentrations of urea, which are several mM

    Ammonia sensing for enzymatic urea detection using organic field effect transistors and a semipermeable membrane

    Get PDF
    Organic Field Effect Transistors (OFETs) are used to measure ammonia in solution via ammonia diffusion into the OFET channel. An increase in ammonia concentrations results in a decrease in transistor currents. The regeneration of the OFET current after ammonia uptake is slow, which allows us to read out the maximum ammonia dose which was applied. A 100 nm parylene-C layer serves as a semipermeable top gate dielectric. The parylene layer is functionalized with the covalently attached enzyme urease. The enzyme catalyses the hydrolysis of urea to ammonia and carbon dioxide, i.e. urea can be detected via its hydrolysis product ammonia. The sensitivity covers a range of physiological concentrations of urea, which are several mM

    Neural Stem Cell Spreading on Lipid Based Artificial Cell Surfaces, Characterized by Combined X-ray and Neutron Reflectometry

    Get PDF
    We developed a bioadhesive coating based on a synthetic peptide-conjugate (AK-cycloRGDfC]) which contains multiples of the arginyl-glycyl-aspartic acid (RGD) amino acid sequence. Biotinylated AK-cycloRGDfC] is bound to a supported lipid bilayer via a streptavidin interlayer. Layering, hydration and packing of the coating is quantified by X-ray and neutron reflectometry experiments. AK-cycloRGDfC] binds to the streptavidin interlayer in a stretched-out on edge configuration. The highly packed configuration with only 12% water content maximizes the number of accessible adhesion sites. Enhanced cell spreading of neural stem cells was observed for AK-cycloRGDfC] functionalized bilayers. Due to the large variety of surfaces which can be coated by physisorption of lipid bilayers, this approach is of general interest for the fabrication of biocompatible surfaces

    Influence of Ibuprofen on Phospholipid Membranes

    Get PDF
    Basic understanding of biological membranes is of paramount importance as these membranes comprise the very building blocks of life itself. Cells depend in their function on a range of properties of the membrane, which are important for the stability and function of the cell, information and nutrient transport, waste disposal and finally the admission of drugs into the cell and also the deflection of bacteria and viruses. We have investigated the influence of ibuprofen on the structure and dynamics of L-alpha-phosphatidylcholine (SoyPC) membranes by means of grazing incidence small-angle neutron scattering (GISANS), neutron reflectometry and grazing incidence neutron spin echo spectroscopy (GINSES). From the results of these experiments we were able to determine that ibuprofen induces a two-step structuring behavior in the SoyPC films, where the structure evolves from the purely lamellar phase for pure SoyPC over a superposition of two hexagonal phases to a purely hexago- nal phase at high concentrations. Additionally, introduction of ibuprofen stiffens the membranes. This behavior may be instrumental in explaining the toxic behavior of ibuprofen in long-term application.Comment: -Improved indexing in Fig. 4e) -changed concentrations to mol% -improved arguments, however conclusions stay unchange

    Lead-free, luminescent perovskite nanocrystals obtained through ambient condition synthesis

    Get PDF
    Heterovalent substitution of toxic lead is an increasingly popular design strategy to obtain environmentally sustainable variants of the exciting material class of halide perovskites. Perovskite nanocrystals (NCs) obtained through solution-based methods exhibit exceedingly high optical quality. Unfortunately, most of these synthesis routes still require reaction under inert gas and at very high temperatures. Herein we present a novel synthesis routine for lead-free double perovskite NCs. We combine hot injection and ligand-assisted reprecipitation (LARP) methods to achieve a low-temperature and ambient atmosphere-based synthesis for manganese-doped Cs_{2}NaBiCl_{6} NCs. Mn incorporation is critical for the otherwise non-emissive material, with a 9:1 Bi:Mn precursor ratio maximizing the bright orange photoluminescence (PL) and quantum yield (QY). Higher temperatures slightly increased the material's performance, yet NCs synthesized at room temperature were still emissive, highlighting the versatility of the synthetic approach. Furthermore, the NCs show excellent long-term stability in ambient conditions, facilitating additional investigations and energy-related applications

    Arrangement of Annexin A2 tetramer and its impact on the structure and diffusivity of supported lipid bilayers

    Full text link
    Annexins are a family of proteins that bind to anionic phospholipid membranes in a Ca2+-dependent manner. Annexin A2 forms heterotetramers (Anx A2t) with the S100A10 (p11) protein dimer. The tetramer is capable of bridging phospholipid membranes and it has been suggested to play a role in Ca2+-dependent exocytosis and cell-cell adhesion of metastatic cells. Here, we employ x-ray reflectivity measurements to resolve the conformation of Anx A2t upon Ca2+-dependent binding to single supported lipid bilayers (SLBs) composed of different mixtures of anionic (POPS) and neutral (POPC) phospholipids. Based on our results we propose that Anx A2t binds in a side-by-side configuration, i.e., both Anx A2 monomers bind to the bilayer with the p11 dimer positioned on top. Furthermore, we observe a strong decrease of lipid mobility upon binding of Anx A2t to SLBs with varying POPS content. X-ray reflectivity measurements indicate that binding of Anx A2t also increases the density of the SLB. Interestingly, in the protein-facing leaflet of the SLB the lipid density is higher than in the substrate-facing leaflet. This asymmetric densification of the lipid bilayer by Anx A2t and Ca2+ might have important implications for the biochemical mechanism of Anx A2t-induced endo- and exocytosis.Comment: 27 pages, 7 figures; supplementary material available upon request from the author

    3D-printed SAXS chamber for controlled in situ dialysis and optical characterization

    Get PDF
    3D printing changes the scope of how samples can be mounted for small-angle X-ray scattering (SAXS). In this paper a 3D-printed X-ray chamber, which allows for in situ exchange of buffer and in situ optical transmission spectroscopy, is presented. The chamber is made of cyclic olefin copolymers (COC), including COC X-ray windows providing ultra-low SAXS background. The design integrates a membrane insert for in situ dialysis of the 100 ml sample volume against a reservoir, which enables measurements of the same sample under multiple conditions using an in-house X-ray setup equipped with a 17.4 keV molybdenum source. The design's capabilities are demonstrated by measuring reversible structural changes in lipid and polymer systems as a function of salt concentration and pH. In the same chambers optical light transmission spectroscopy was carried out measuring the optical turbidity of the mesophases and local pH values using pH-responsive dyes. Microfluidic exchange and optical spectroscopy combined with in situ X-ray scattering enables vast applications for the study of responsive materials
    • …
    corecore