11,787 research outputs found

    Ab initio study of semiconducting carbon nanotubes adsorbed on the Si(100) surface: diameter- and registration-dependent atomic configurations and electronic properties

    Full text link
    We present a first-principles study of semiconducting carbon nanotubes adsorbed on the unpassivated Si(100) surface. We have found metallicity for the combined system caused by n-doping of the silicon slab representing the surface by the SWNT. We confirm this metallicity for nanotubes of different diameters and chiral angles, and find the effect to be independent of the orientation of the nanotubes on the surface. We also present adsorption energetics and configurations which show semiconducting SWNTs farther apart from the surface and transferring less charge, in comparison with metallic SWNTs of similar diameter.Comment: Replaces old (Jan 2006) version; more supporting material. 11 pages, 8 figures, 7 table

    Structure of the two-boundary XXZ model with non-diagonal boundary terms

    Full text link
    We study the integrable XXZ model with general non-diagonal boundary terms at both ends. The Hamiltonian is considered in terms of a two boundary extension of the Temperley-Lieb algebra. We use a basis that diagonalizes a conserved charge in the one-boundary case. The action of the second boundary generator on this space is computed. For the L-site chain and generic values of the parameters we have an irreducible space of dimension 2^L. However at certain critical points there exists a smaller irreducible subspace that is invariant under the action of all the bulk and boundary generators. These are precisely the points at which Bethe Ansatz equations have been formulated. We compute the dimension of the invariant subspace at each critical point and show that it agrees with the splitting of eigenvalues, found numerically, between the two Bethe Ansatz equations.Comment: 9 pages Latex. Minor correction

    Equivalences between spin models induced by defects

    Get PDF
    The spectrum of integrable spin chains are shown to be independent of the ordering of their spins. As an application we introduce defects (local spin inhomogeneities in homogenous chains) in two-boundary spin systems and, by changing their locations, we show the spectral equivalence of different boundary conditions. In particular we relate certain nondiagonal boundary conditions to diagonal ones.Comment: 14 pages, 16 figures, LaTeX, Extended versio

    Origin of electron cyclotron maser-induced radio emissions at ultra-cool dwarfs: magnetosphere-ionosphere coupling currents

    Full text link
    A number of ultra-cool dwarfs emit circularly polarised radio waves generated by the electron cyclotron maser instability. In the solar system such radio is emitted from regions of strong auroral magnetic field-aligned currents. We thus apply ideas developed for Jupiter's magnetosphere, being a well-studied rotationally-dominated analogue in our solar system, to the case of fast-rotating UCDs. We explain the properties of the radio emission from UCDs by showing that it would arise from the electric currents resulting from an angular velocity shear in the fast-rotating magnetic field and plasma, i.e. by an extremely powerful analogue of the process which causes Jupiter's auroras. Such a velocity gradient indicates that these bodies interact significantly with their space environment, resulting in intense auroral emissions. These results strongly suggest that auroras occur on bodies outside our solar system.Comment: Accepted for publication in the Astrophysical Journa

    A hybrid method for understanding black-hole mergers: head-on case

    Get PDF
    Black-hole-binary coalescence is often divided into three stages: inspiral, merger and ringdown. The post-Newtonian (PN) approximation treats the inspiral phase, black-hole perturbation (BHP) theory describes the ringdown, and the nonlinear dynamics of spacetime characterize the merger. In this paper, we introduce a hybrid method that incorporates elements of PN and BHP theories, and we apply it to the head-on collision of black holes with transverse, anti-parallel spins. We compare our approximation technique with a full numerical-relativity simulation, and we find good agreement between the gravitational waveforms and the radiated energy and momentum. Our results suggest that PN and BHP theories may suffice to explain the main features of outgoing gravitational radiation for head-on mergers. This would further imply that linear perturbations to exact black-hole solutions can capture the nonlinear aspects of head-on binary-black-hole mergers accessible to observers far from the collision.Comment: 14 pages, 6 figures, 1 table, revtex4 format, v2 references added, v3 expanded discussion of comparison with numerical relativity, and small changes to match published versio

    Binary Frontal Polymerization: Velocity Dependence on Initial Composition

    Get PDF
    Frontal polymerization is a mode of polymerization in which a localized zone of reaction propagates through the coupling of thermal diffusion and the Arrhenius dependence of the reaction rate. The dependence of the front propagation velocity on the initial composition has been determined in initially miscible binary systems of a free-radically cured diacrylate and an amine- or cationically cured epoxy resin. A minimum of the velocity as a function of the monomer mole fraction is observed if the two polymerizations occur independently. Excellent agreement with an analytical description was found with the diacrylate and an amine-cured epoxy but not for a diacrylate and a cationically cured one because of the effect of HCl impurities on the peroxide

    Performance of differenced range data types in Voyager navigation

    Get PDF
    Voyager radio navigation made use of a differenced rage data type for both Saturn encounters because of the low declination singularity of Doppler data. Nearly simultaneous two-way range from two-station baselines was explicitly differenced to produce this data type. Concurrently, a differential VLBI data type (DDOR), utilizing doubly differenced quasar-spacecraft delays, with potentially higher precision was demonstrated. Performance of these data types is investigated on the Jupiter-to-Saturn leg of Voyager 2. The statistics of performance are presented in terms of actual data noise comparisons and sample orbit estimates. Use of DDOR as a primary data type for navigation to Uranus is discussed
    corecore