32 research outputs found
Unsupervised Contact Learning for Humanoid Estimation and Control
This work presents a method for contact state estimation using fuzzy
clustering to learn contact probability for full, six-dimensional humanoid
contacts. The data required for training is solely from proprioceptive sensors
- endeffector contact wrench sensors and inertial measurement units (IMUs) -
and the method is completely unsupervised. The resulting cluster means are used
to efficiently compute the probability of contact in each of the six
endeffector degrees of freedom (DoFs) independently. This clustering-based
contact probability estimator is validated in a kinematics-based base state
estimator in a simulation environment with realistic added sensor noise for
locomotion over rough, low-friction terrain on which the robot is subject to
foot slip and rotation. The proposed base state estimator which utilizes these
six DoF contact probability estimates is shown to perform considerably better
than that which determines kinematic contact constraints purely based on
measured normal force.Comment: Submitted to the IEEE International Conference on Robotics and
Automation (ICRA) 201
Trajectory generation for multi-contact momentum-control
Simplified models of the dynamics such as the linear inverted pendulum model
(LIPM) have proven to perform well for biped walking on flat ground. However,
for more complex tasks the assumptions of these models can become limiting. For
example, the LIPM does not allow for the control of contact forces
independently, is limited to co-planar contacts and assumes that the angular
momentum is zero. In this paper, we propose to use the full momentum equations
of a humanoid robot in a trajectory optimization framework to plan its center
of mass, linear and angular momentum trajectories. The model also allows for
planning desired contact forces for each end-effector in arbitrary contact
locations. We extend our previous results on LQR design for momentum control by
computing the (linearized) optimal momentum feedback law in a receding horizon
fashion. The resulting desired momentum and the associated feedback law are
then used in a hierarchical whole body control approach. Simulation experiments
show that the approach is computationally fast and is able to generate plans
for locomotion on complex terrains while demonstrating good tracking
performance for the full humanoid control
State Estimation for a Humanoid Robot
This paper introduces a framework for state estimation on a humanoid robot
platform using only common proprioceptive sensors and knowledge of leg
kinematics. The presented approach extends that detailed in [1] on a quadruped
platform by incorporating the rotational constraints imposed by the humanoid's
flat feet. As in previous work, the proposed Extended Kalman Filter (EKF)
accommodates contact switching and makes no assumptions about gait or terrain,
making it applicable on any humanoid platform for use in any task. The filter
employs a sensor-based prediction model which uses inertial data from an IMU
and corrects for integrated error using a kinematics-based measurement model
which relies on joint encoders and a kinematic model to determine the relative
position and orientation of the feet. A nonlinear observability analysis is
performed on both the original and updated filters and it is concluded that the
new filter significantly simplifies singular cases and improves the
observability characteristics of the system. Results on simulated walking and
squatting datasets demonstrate the performance gain of the flat-foot filter as
well as confirm the results of the presented observability analysis.Comment: IROS 2014 Submission, IEEE/RSJ International Conference on
Intelligent Robots and Systems (2014) 952-95
Humanoid Momentum Estimation Using Sensed Contact Wrenches
This work presents approaches for the estimation of quantities important for
the control of the momentum of a humanoid robot. In contrast to previous
approaches which use simplified models such as the Linear Inverted Pendulum
Model, we present estimators based on the momentum dynamics of the robot. By
using this simple yet dynamically-consistent model, we avoid the issues of
using simplified models for estimation. We develop an estimator for the center
of mass and full momentum which can be reformulated to estimate center of mass
offsets as well as external wrenches applied to the robot. The observability of
these estimators is investigated and their performance is evaluated in
comparison to previous approaches.Comment: Submitted to the 15th IEEE RAS Humanoids Conference, to be held in
Seoul, Korea on November 3 - 5, 201
Momentum Control with Hierarchical Inverse Dynamics on a Torque-Controlled Humanoid
Hierarchical inverse dynamics based on cascades of quadratic programs have
been proposed for the control of legged robots. They have important benefits
but to the best of our knowledge have never been implemented on a torque
controlled humanoid where model inaccuracies, sensor noise and real-time
computation requirements can be problematic. Using a reformulation of existing
algorithms, we propose a simplification of the problem that allows to achieve
real-time control. Momentum-based control is integrated in the task hierarchy
and a LQR design approach is used to compute the desired associated closed-loop
behavior and improve performance. Extensive experiments on various balancing
and tracking tasks show very robust performance in the face of unknown
disturbances, even when the humanoid is standing on one foot. Our results
demonstrate that hierarchical inverse dynamics together with momentum control
can be efficiently used for feedback control under real robot conditions.Comment: 21 pages, 11 figures, 4 tables in Autonomous Robots (2015
On the Use of Torque Measurement in Centroidal State Estimation
State of the art legged robots are either capable of measuring torque at the
output of their drive systems, or have transparent drive systems which enable
the computation of joint torques from motor currents. In either case, this
sensor modality is seldom used in state estimation. In this paper, we propose
to use joint torque measurements to estimate the centroidal states of legged
robots. To do so, we project the whole-body dynamics of a legged robot into the
nullspace of the contact constraints, allowing expression of the dynamics
independent of the contact forces. Using the constrained dynamics and the
centroidal momentum matrix, we are able to directly relate joint torques and
centroidal states dynamics. Using the resulting model as the process model of
an Extended Kalman Filter (EKF), we fuse the torque measurement in the
centroidal state estimation problem. Through real-world experiments on a
quadruped robot with different gaits, we demonstrate that the estimated
centroidal states from our torque-based EKF drastically improve the recovery of
these quantities compared to direct computation
Resonancia magnética versus tomografÃa computada para la detección de lesiones vasculares agudas en pacientes que consultan por sÃntomas de accidente cerebrovascular
ResumenAntecedentesLa resonancia magnética (RM) se utiliza cada vez con mayor frecuencia para el diagnóstico del accidente cerebrovascular isquémico agudo aunque ha sido debatida su sensibilidad para la detección precoz de la hemorragia intracerebral. La tomografÃa computada (TC) se usa ampliamente en el tratamiento clÃnico del accidente cerebrovascular agudo, especialmente para la exclusión rápida de la hemorragia intracerebral.ObjetivosComparar la precisión diagnóstica de la RM de difusión (RMD) y la CT para el accidente cerebrovascular isquémico agudo, y estimar la precisión diagnóstica de la RMD para el accidente cerebrovascular hemorrágico agudo.Estrategia de búsquedaSe efectuaron búsquedas en MEDLINE y EMBASE (enero de 1995 hasta marzo de 2009) y se examinó la bibliografÃa de los estudios pertinentes en busca de otras referencias.Criterios de selecciónSe seleccionaron los estudios que compararon RMD y TC en los mismos pacientes para la detección del accidente cerebrovascular isquémico o examinaron la utilidad de la RM para la detección del accidente cerebrovascular hemorrágico, que realizaron la imaginologÃa dentro de las 12 horas de la aparición de los sÃntomas de accidente cerebrovascular y presentaron datos suficientes como para construir tablas de contingencia.Obtención y análisis de los datosTres autores de forma independiente extrajeron los datos de las caracterÃsticas del estudio y las medidas de precisión. Los datos sobre el accidente cerebrovascular isquémico se evaluaron mediante metanálisis de efectos aleatorios y de efectos fijos.Resultados principalesOcho estudios, con un total de 308 participantes, cumplieron los criterios de inclusión. Siete estudios contribuyeron a la evaluación del accidente cerebrovascular isquémico y dos estudios a la evaluación del accidente cerebrovascular hemorrágico. El espectro de pacientes fue relativamente limitado en todos los estudios, los tamaños de las muestras fueron pequeños, hubo un significativo sesgo de incorporación y los procedimientos de cegamiento fueron a menudo incompletos. Entre los pacientes en quienes posteriormente se confirmó el diagnóstico de accidente cerebrovascular isquémico agudo (161/226), las estimaciones de resumen para la RMD fueron: sensibilidad 0,99 (IC del 95%: 0,23 a 1,00), especificidad 0,92 (IC del 95%: 0,83 a 0,97). Las estimaciones de resumen para la TC fueron: sensibilidad 0,39 (IC del 95%: 0,16 a 0,69), especificidad 1,00 (IC del 95%: 0,94 a 1,00).Los dos estudios sobre accidente cerebrovascular hemorrágico informaron estimaciones altas para las secuencias de difusión y ecogradiente pero tenÃan estándares de referencia inconsistentes. No se calcularon las estimaciones generales para estos dos estudios. No fue posible evaluar la practicidad o los temas relativos a la relación entre costo y efectividad.Conclusiones de los autoresLa RMD parece ser más sensible que la TC para la detección precoz del accidente cerebrovascular isquémico en pacientes sumamente seleccionados. Sin embargo, la variabilidad en la calidad de los estudios incluidos y la presencia de los sesgos de espectro e incorporación tornan dudosa la confiabilidad y la posibilidad de generalizar los resultados observados. Se requieren estudios adicionales bien diseñados, sin sesgos metodológicos, con muestras de pacientes más representativas y estimaciones de la practicidad y los costos, a fin de determinar qué pacientes deben ser sometidos a RM y qué pacientes a TC en el caso de presunto accidente cerebrovascular agudo
Investigation of wing crack formation with a combined phase-field and experimental approach
Fractures that propagate off of weak slip planes are known as wing cracks and often play important roles in both tectonic deformation and fluid flow across reservoir seals. Previous numerical models have produced the basic kinematics of wing crack openings but generally have not been able to capture fracture geometries seen in nature. Here we present both a phase-field modeling approach and a physical experiment using gelatin for a wing crack formation. By treating the fracture surfaces as diffusive zones instead of as discontinuities, the phase-field model does not require consideration of unpredictable rock properties or stress inhomogeneities around crack tips. It is shown by benchmarking the models with physical experiments that the numerical assumptions in the phase-field approach do not affect the final model predictions of wing crack nucleation and growth. With this study, we demonstrate that it is feasible to implement the formation of wing cracks in large scale phase-field reservoir models
Vintage venoms: proteomic and pharmacological stability of snake venoms stored for up to eight decades
For over a century, venom samples from wild snakes have been collected and stored around the world. However, the quality of storage conditions for "vintage" venoms has rarely been assessed. The goal of this study was to determine whether such historical venom samples are still biochemically and pharmacologically viable for research purposes, or if new sample efforts are needed. In total, 52 samples spanning 5 genera and 13 species with regional variants of some species (e.g., 14 different populations of Notechis scutatus) were analysed by a combined proteomic and pharmacological approach to determine protein structural stability and bioactivity. When venoms were not exposed to air during storage, the proteomic results were virtually indistinguishable from that of fresh venom and bioactivity was equivalent or only slightly reduced. By contrast, a sample of Acanthophis antarcticus venom that was exposed to air (due to a loss of integrity of the rubber stopper) suffered significant degradation as evidenced by the proteomics profile. Interestingly, the neurotoxicity of this sample was nearly the same as fresh venom, indicating that degradation may have occurred in the free N- or C-terminus chains of the proteins, rather than at the tips of loops where the functional residues are located. These results suggest that these and other vintage venom collections may be of continuing value in toxin research. This is particularly important as many snake species worldwide are declining due to habitat destruction or modification. For some venoms (such as N. scutatus from Babel Island, Flinders Island, King Island and St. Francis Island) these were the first analyses ever conducted and these vintage samples may represent the only venom ever collected from these unique island forms of tiger snakes. Such vintage venoms may therefore represent the last remaining stocks of some local populations and thus are precious resources. These venoms also have significant historical value as the Oxyuranus venoms analysed include samples from the first coastal taipan (Oxyuranus scutellatus) collected for antivenom production (the snake that killed the collector Kevin Budden), as well as samples from the first Oxyuranus microlepidotus specimen collected after the species' rediscovery in 1976. These results demonstrate that with proper storage techniques, venom samples can retain structural and pharmacological stability. This article is part of a Special Issue entitled: Proteomics of non-model organisms. Biological significance: •These results show that with proper storage venoms are useful for decades.•These results have direct implications for the use of rare venoms