64 research outputs found

    Targeted Radiotherapeutics from 'Bench-to-Bedside'

    Get PDF
    The concept of targeted radionuclide therapy (TRT) is the accurate and efficient delivery of radiation to disseminated cancer lesions while minimizing damage to healthy tissue and organs. Critical aspects for successful development of novel radiopharmaceuticals for TRT are: i) the identification and characterization of suitable targets expressed on cancer cells; ii) the selection of chemical or biological molecules which exhibit high affinity and selectivity for the cancer cell-associated target; iii) the selection of a radionuclide with decay properties that suit the properties of the targeting molecule and the clinical purpose. The Center for Radiopharmaceutical Sciences (CRS) at the Paul Scherrer Institute in Switzerland is privileged to be situated close to unique infrastructure for radionuclide production (high energy accelerators and a neutron source) and access to C/B-type laboratories including preclinical, nuclear imaging equipment and Swissmedic-certified laboratories for the preparation of drug samples for human use. These favorable circumstances allow production of non-standard radionuclides, exploring their biochemical and pharmacological features and effects for tumor therapy and diagnosis, while investigating and characterizing new targeting structures and optimizing these aspects for translational research on radiopharmaceuticals. In close collaboration with various clinical partners in Switzerland, the most promising candidates are translated to clinics for 'first-in-human' studies. This article gives an overview of the research activities at CRS in the field of TRT by the presentation of a few selected projects.ISSN:0009-429

    Study of thulium-167 cyclotron production: a potential medically-relevant radionuclide.

    Get PDF
    Introduction: Targeted Radionuclide Therapy is used for the treatment of tumors in nuclear medicine, while sparing healthy tissues. Its application to cancer treatment is expanding. In particular, Auger-electron emitters potentially exhibit high efficacy in treating either small metastases or single tumor cells due to their short range in tissue. The aim of this paper is to study the feasibility of a large-scale production of thulium-167, an Auger-electron emitter radionuclide, in view of eventual systematic preclinical studies. Methods: Proton-irradiated enriched erbium-167 and erbium-168 oxides were used to measure the production cross sections of thulium-165, thulium-166, thulium-167, and thulium-168 utilizing an 18-MeV medical cyclotron equipped with a Beam Transport Line (BTL) at the Bern medical cyclotron laboratory. The comparison between the experimental and the TENDL 2021 theoretical cross-section results were in good agreement. Additional experiments were performed to assess the production yields of thulium radioisotopes in the BTL. Thulium-167 production yield was also measured irradiating five different target materials (167 Er 2 O 3, 168 Er 2 O 3, nat Tm 2 O 3, nat Yb 2 O 3, 171 Yb 2 O 3) with proton beams up to 63 MeV at the Injector II cyclotron of Paul Scherrer Institute. Results and Discussion: Our experiments showed that an 8-h irradiation of enriched ytterbium-171 oxide produced about 420 MBq of thulium-167 with a radionuclidic purity of 99.95% after 5 days of cooling time with a proton beam of about 53 MeV. Larger activities of thulium-167 can be achieved using enriched erbium-168 oxide with a 23-MeV proton beam, obtaining about 1 GBq after 8-h irradiation with a radionuclidic purity of 99.5% 5 days post end of bombardment

    Half-life measurement of 44Sc and 44mSc.

    Get PDF
    The half-lives of 44Sc and 44mSc were measured by following their decay rate using several measurement systems: two ionization chambers and three γ-spectrometry detectors with digital and/or analogue electronics. For 44Sc, the result was the combination of seven half-life values giving a result of 4.042(7) h, which agrees with the last reported value of 4.042(3) h and confirms the near to 2% deviation from the recommended half-life of 3.97(4) h. Scandium-44 is present as an impurity in the production of 44Sc by cyclotron proton irradiation. Its half-life was determined by measurements performed a few days after End of Bomardment (EoB), so that the 44Sc decayed down to a negligible level. Seven measurements were combined to obtain an average of 58.7(3) h, which is in agreement with the recommended value of 58.6(1) h

    Combination of terbium-161 with somatostatin receptor antagonists—a potential paradigm shift for the treatment of neuroendocrine neoplasms

    Full text link
    Purpose: The β¯-emitting terbium-161 also emits conversion and Auger electrons, which are believed to be effective in killing single cancer cells. Terbium-161 was applied with somatostatin receptor (SSTR) agonists that localize in the cytoplasm (DOTATOC) and cellular nucleus (DOTATOC-NLS) or with a SSTR antagonist that localizes at the cell membrane (DOTA-LM3). The aim was to identify the most favorable peptide/terbium-161 combination for the treatment of neuroendocrine neoplasms (NENs). Methods: The capability of the 161Tb- and 177Lu-labeled somatostatin (SST) analogues to reduce viability and survival of SSTR-positive AR42J tumor cells was investigated in vitro. The radiopeptides' tissue distribution profiles were assessed in tumor-bearing mice. The efficacy of terbium-161 compared to lutetium-177 was investigated in therapy studies in mice using DOTATOC or DOTA-LM3, respectively. Results: In vitro, [161Tb]Tb-DOTA-LM3 was 102-fold more potent than [177Lu]Lu-DOTA-LM3; however, 161Tb-labeled DOTATOC and DOTATOC-NLS were only 4- to fivefold more effective inhibiting tumor cell viability than their 177Lu-labeled counterparts. This result was confirmed in vivo and demonstrated that [161Tb]Tb-DOTA-LM3 was significantly more effective in delaying tumor growth than [177Lu]Lu-DOTA-LM3, thereby, prolonging survival of the mice. A therapeutic advantage of terbium-161 over lutetium-177 was also manifest when applied with DOTATOC. Since the nuclear localizing sequence (NLS) compromised the in vivo tissue distribution of DOTATOC-NLS, it was not used for therapy. Conclusion: The use of membrane-localizing DOTA-LM3 was beneficial and profited from the short-ranged electrons emitted by terbium-161. Based on these preclinical data, [161Tb]Tb-DOTA-LM3 may outperform the clinically employed [177Lu]Lu-DOTATOC for the treatment of patients with NENs

    Inherited determinants of Crohn's disease and ulcerative colitis phenotypes: a genetic association study

    Get PDF
    Crohn's disease and ulcerative colitis are the two major forms of inflammatory bowel disease; treatment strategies have historically been determined by this binary categorisation. Genetic studies have identified 163 susceptibility loci for inflammatory bowel disease, mostly shared between Crohn's disease and ulcerative colitis. We undertook the largest genotype association study, to date, in widely used clinical subphenotypes of inflammatory bowel disease with the goal of further understanding the biological relations between diseases

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    New Radionuclides and Technological Advances in SPECT and PET Scanners

    No full text
    Developments throughout the history of nuclear medicine have involved improvements in both instrumentation and radionuclides, which have been intertwined. Instrumentation developments always occurred during the search to improving devices&rsquo; sensitivity and included advances in detector technology (with the introduction of cadmium zinc telluride and digital Positron Emission Tomography&mdash;PET-devices with silicon photomultipliers), design (total body PET) and configuration (ring-shaped, Single-Photon Emission Computed Tomography (SPECT), Compton camera). In the field of radionuclide development, we observed the continual changing of clinically used radionuclides, which is sometimes influenced by instrumentation technology but also driven by availability, patient safety and clinical questions. Some areas, such as tumour imaging, have faced challenges when changing radionuclides based on availability, when this produced undesirable clinical findings with the introduction of unclear focal uptakes and unspecific uptakes. On the other end of spectrum, further developments of PET technology have seen a resurgence in its use in nuclear cardiology, with rubidium-82 from strontium-82/rubidium-82 generators being the radionuclide of choice, moving away from SPECT nuclides thallium-201 and technetium-99m. These continuing improvements in both instrumentation and radionuclide development have helped the growth of nuclear medicine and its importance in the ever-evolving range of patient care options

    A Step-by-Step Guide for the Novel Radiometal Production for Medical Applications: Case Studies with 68Ga, 44Sc, 177Lu and 161Tb

    No full text
    The production of novel radionuclides is the first step towards the development of new effective radiopharmaceuticals, and the quality thereof directly affects the preclinical and clinical phases. In this review, novel radiometal production for medical applications is briefly elucidated. The production status of the imaging nuclide 44Sc and the therapeutic β--emitter nuclide 161Tb are compared to their more established counterparts, 68Ga and 177Lu according to their targetry, irradiation process, radiochemistry, and quality control aspects. The detailed discussion of these significant issues will help towards the future introduction of these promising radionuclides into drug manufacture for clinical application under Good Manufacturing Practice (GMP).ISSN:1420-304

    Active bone marrow S-values for the low-energy electron emitter terbium-161 compared to S-values for lutetium-177 and yttrium-90

    No full text
    Background Based on theoretical and preclinical results, terbium-161 may be a valid alternative to lutetium-177 and yttrium-90 in radionuclide therapies. The large low-energy electron emission from terbium-161 is a favorable feature in the treatment of disseminated disease, but its impact on the radiosensitive bone marrow needs to be evaluated. Using voxel-based skeletal dosimetry models in which active bone marrow is defined as regions containing stem cells and progenitor cells of the hematopoietic lineage, we generated S-values (absorbed dose per decay) for terbium-161 and evaluated its distribution-dependence in bone marrow cavities. Methods S-values in the active bone marrow were calculated for terbium-161, lutetium-177, and yttrium-90 irradiation using two (male/female) image-based bone marrow dosimetry models. The radionuclides were distributed to one of the three structures that define the spongiosa bone region in the skeletal models: (i) active bone marrow, (ii) inactive bone marrow, or (iii) surface or whole volume of the trabecular bone. Decay data from ICRP 107 were combined with specific absorbed fractions to calculate S-values for 13 skeletal sites. To increase the utility, the skeletal site-specific S-values were averaged to produce whole-body average S-values and spongiosa average S-values. Results For yttrium-90, the high-energy β particles irradiate the active marrow regardless of the source compartment, consistently generating the highest S-values (65–90% higher). Between terbium-161 and lutetium-177, the largest differences in S-values were with an active marrow source (50%), such as self-irradiation, due to the contribution of the short-ranged conversion and Auger electrons from terbium-161. Their influence decreased as the source moved to inactive marrow or the surface or volume of the trabecular bone, reducing the S-values and the differences between terbium-161 and lutetium-177 (15–35%). Conclusion The S-values of terbium-161 for active bone marrow and, consequently, the bone marrow toxicity profile were more dependent on the radionuclide distribution within the bone marrow cavity than the S-values of lutetium-177 and yttrium-90. This effect was attributed to the considerable low-energy electron emission of terbium-161. Therefore, it will be critical to investigate the bone marrow distribution of a particular radiopharmaceutical for accurate estimation of the active bone marrow dose

    165Er: A new candidate for Auger electron therapy and its possible cyclotron production from natural holmium targets

    No full text
    165Er, a pure Auger-electron emitter, could be an attractive candidate for targeted radionuclide therapy. Auger electrons possess short penetration paths with high linear energy transfer. In this study, experimental cross-sections of the 165Ho(p, n)165Er nuclear reaction were measured and targets irradiated with protons using Injector II cyclotron at Paul Scherrer Institute (Switzerland) and the 18 MeV medical cyclotron laboratory at the University Hospital in Bern. A purification method was developed in order to obtain 165Er suitable for in vivo applications.ISSN:0969-8043ISSN:1872-980
    corecore