19,090 research outputs found

    Wakefulness affects synaptic and network activity by increasing extracellular astrocyte-derived adenosine

    Get PDF
    Loss of sleep causes an increase in sleep drive and deficits in hippocampal-dependent memory. Both of these responses are thought to require activation of adenosine A1 receptors (adorA1Rs) and release of transmitter molecules including ATP, which is rapidly converted to adenosine in the extracellular space, from astrocytes in a process termed gliotransmission. Although it is increasingly clear that astrocyte-derived adenosine plays an important role in driving the homeostatic sleep response and the effects of sleep loss on memory (Halassa et al., 2009; Florian et al., 2011), previous studies have not determined whether the concentration of this signaling molecule increases in response to wakefulness. Here, we show that the level of adorA1R activation increases in response to wakefulness in mice (Mus musculus). We found that this increase affected synaptic transmission in the hippocampus and modulated network activity in the cortex. Direct biosensor-based measurement of adenosine showed that the net extracellular concentration of this transmitter increased in response to normal wakefulness and sleep deprivation. Genetic inhibition of gliotransmission prevented this increase and attenuated the wakefulness-dependent changes in synaptic and network regulation by adorA1R. Consequently, we conclude that wakefulness increases the level of extracellular adenosine in the hippocampus and that this increase requires the release of transmitters from astroctyes

    The Achilles tendon total rupture score : a study of responsiveness, internal consistency and convergent validity on patients with acute Achilles tendon ruptures

    Get PDF
    Background The Achilles tendon Total Rupture Score was developed by a research group in 2007 in response to the need for a patient reported outcome measure for this patient population. Beyond this original development paper, no further validation studies have been published. Consequently the purpose of this study was to evaluate internal consistency, convergent validity and responsiveness of this newly developed patient reported outcome measure within patients who have sustained an isolated acute Achilles tendon rupture. Methods Sixty-four eligible patients with an acute rupture of their Achilles tendon completed the Achilles tendon Total Rupture Score alongside two further patient reported outcome measures (Disability Rating Index and EQ 5D). These were completed at baseline, six weeks, three months, six months and nine months post injury. The Achilles tendon Total Rupture Score was evaluated for internal consistency, using Cronbach's alpha, convergent validity, through correlation analysis and responsiveness, by analysing floor and ceiling effects and calculating its relative efficiency in comparison to the Disability Rating Index and EQ 5D scores. Results The Achilles tendon Total Rupture Score demonstrated high internal consistency (Cronbachs alpha > 0.8) and correlated significantly (p < 0.001) with the Disability Rating Index at five time points (pre-injury, six weeks, three, six and nine months) with correlation coefficients between -0.5 and -0.9. However, the confidence intervals were wide. Furthermore, the ability of the new score to detect clinically important changes over time (responsiveness) was shown to be greater than the Disability Rating Index and EQ 5D. Conclusions A universally accepted outcome measure is imperative to allow comparisons to be made across practice. This is the first study to evaluate aspects of validity of this newly developed outcome measure, outside of the developing centre. The ATRS demonstrated high internal consistency and responsiveness, with limited convergent validity. This research provides further support for the use of this outcome measure, however further research is required to advocate its universal use in patients with acute Achilles tendon ruptures. Such areas include inter-rater reliability and research to determine the minimally clinically important difference between scores

    Evaluating epidemic forecasts in an interval format

    Get PDF
    For practical reasons, many forecasts of case, hospitalization and death counts in the context of the current COVID-19 pandemic are issued in the form of central predictive intervals at various levels. This is also the case for the forecasts collected in the COVID-19 Forecast Hub (https://covid19forecasthub.org/). Forecast evaluation metrics like the logarithmic score, which has been applied in several infectious disease forecasting challenges, are then not available as they require full predictive distributions. This article provides an overview of how established methods for the evaluation of quantile and interval forecasts can be applied to epidemic forecasts in this format. Specifically, we discuss the computation and interpretation of the weighted interval score, which is a proper score that approximates the continuous ranked probability score. It can be interpreted as a generalization of the absolute error to probabilistic forecasts and allows for a decomposition into a measure of sharpness and penalties for over- and underprediction

    Early diffusion evidence of retrograde transsynaptic degeneration in the human visual system

    Get PDF
    We investigated whether diffusion tensor imaging (DTI) indices of white matter integrity would offer early markers of retrograde transsynaptic degeneration (RTD) in the visual system after stroke Objective: We investigated whether diffusion tensor imaging (DTI) indices of white matter integrity would offer early markers of retrograde transsynaptic degeneration (RTD) in the visual system after stroke. Methods: We performed a prospective longitudinal analysis of the sensitivity of DTI markers of optic tract health in 12 patients with postsynaptic visual pathway stroke, 12 stroke controls, and 28 healthy controls. We examined group differences in (1) optic tract fractional anisotropy (FA-asymmetry), (2) perimetric measures of visual impairment, and (3) the relationship between FA-asymmetry and perimetric assessment. Results: FA-asymmetry was higher in patients with visual pathway lesions than in control groups. These differences were evident 3 months from the time of injury and did not change significantly at 12 months. Perimetric measures showed evidence of impairment in participants with visual pathway stroke but not in control groups. A significant association was observed between FA-asymmetry and perimetric measures at 3 months, which persisted at 12 months. Conclusions: DTI markers of RTD are apparent 3 months from the time of injury. This represents the earliest noninvasive evidence of RTD in any species. Furthermore, these measures associate with measures of visual impairment. DTI measures offer a reproducible, noninvasive, and sensitive method of investigating RTD and its role in visual impairment

    What the Milky Way's Dwarfs tell us about the Galactic Center extended excess

    Get PDF
    The Milky Way's Galactic Center harbors a gamma-ray excess that is a candidate signal of annihilating dark matter. Dwarf galaxies remain predominantly dark in their expected commensurate emission. In this work we quantify the degree of consistency between these two observations through a joint likelihood analysis. In doing so we incorporate Milky Way dark matter halo profile uncertainties, as well as an accounting of diffuse gamma-ray emission uncertainties in dark matter annihilation models for the Galactic Center Extended gamma-ray excess (GCE) detected by the Fermi Gamma-Ray Space Telescope. The preferred range of annihilation rates and masses expands when including these unknowns. Even so, using two recent determinations of the Milky Way halo's local density leave the GCE preferred region of single-channel dark matter annihilation models to be in strong tension with annihilation searches in combined dwarf galaxy analyses. A third, higher Milky Way density determination, alleviates this tension. Our joint likelihood analysis allows us to quantify this inconsistency. We provide a set of tools for testing dark matter annihilation models' consistency within this combined dataset. As an example, we test a representative inverse Compton sourced self-interacting dark matter model, which is consistent with both the GCE and dwarfs.Comment: v2, 12 pages, 4 figures, tools online at: https://github.com/rekeeley/GCE_error

    Industrial structural geology : principles, techniques and integration : an introduction

    Get PDF
    The authors wish to acknowledge the generous financial support provided in association with this volume to the Geological Society and the Petroleum Group by Badley Geoscience Ltd, BP, CGG Robertson, Dana Petroleum Ltd, Getech Group plc, Maersk Oil North Sea UK Ltd, Midland Valley Exploration Ltd, Rock Deformation Research (Schlumberger) and Borehole Image & Core Specialists (Wildcat Geoscience, Walker Geoscience and Prolog Geoscience). We would like to thank the fine team at the Geological Society’s Publishing House for the excellent support and encouragement that they have provided to the editors and authors of this Special Publication.Peer reviewedPublisher PD

    A Novel Gonadotropin-Releasing Hormone 1 (Gnrh1) Enhancer-Derived Noncoding RNA Regulates Gnrh1 Gene Expression in GnRH Neuronal Cell Models.

    Get PDF
    Gonadotropin-releasing hormone (GnRH), a neuropeptide released from a small population of neurons in the hypothalamus, is the central mediator of the hypothalamic-pituitary-gonadal axis, and is required for normal reproductive development and function. Evolutionarily conserved regulatory elements in the mouse, rat, and human Gnrh1 gene include three enhancers and the proximal promoter, which confer Gnrh1 gene expression specifically in GnRH neurons. In immortalized mouse hypothalamic GnRH (GT1-7) neurons, which show pulsatile GnRH release in culture, RNA sequencing and RT-qPCR revealed that expression of a novel long noncoding RNA at Gnrh1 enhancer 1 correlates with high levels of GnRH mRNA expression. In GT1-7 neurons, which contain a transgene carrying 3 kb of the rat Gnrh1 regulatory region, both the mouse and rat Gnrh1 enhancer-derived noncoding RNAs (GnRH-E1 RNAs) are expressed. We investigated the characteristics and function of the endogenous mouse GnRH-E1 RNA. Strand-specific RT-PCR analysis of GnRH-E1 RNA in GT1-7 cells revealed GnRH-E1 RNAs that are transcribed in the sense and antisense directions from distinct 5' start sites, are 3' polyadenylated, and are over 2 kb in length. These RNAs are localized in the nucleus and have a half-life of over 8 hours. In GT1-7 neurons, siRNA knockdown of mouse GnRH-E1 RNA resulted in a significant decrease in the expression of the Gnrh1 primary transcript and Gnrh1 mRNA. Over-expression of either the sense or antisense mouse GnRH-E1 RNA in immature, migratory GnRH (GN11) neurons, which do not express either GnRH-E1 RNA or GnRH mRNA, induced the transcriptional activity of co-transfected rat Gnrh1 gene regulatory elements, where the induction requires the presence of the rat Gnrh1 promoter. Together, these data indicate that GnRH-E1 RNA is an inducer of Gnrh1 gene expression. GnRH-E1 RNA may play an important role in the development and maturation of GnRH neurons
    corecore