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Abstract

For practical reasons, many forecasts of case, hospitalization, and death counts in the con-

text of the current Coronavirus Disease 2019 (COVID-19) pandemic are issued in the form

of central predictive intervals at various levels. This is also the case for the forecasts col-

lected in the COVID-19 Forecast Hub (https://covid19forecasthub.org/). Forecast evaluation

metrics like the logarithmic score, which has been applied in several infectious disease fore-

casting challenges, are then not available as they require full predictive distributions. This

article provides an overview of how established methods for the evaluation of quantile and

interval forecasts can be applied to epidemic forecasts in this format. Specifically, we dis-

cuss the computation and interpretation of the weighted interval score, which is a proper

score that approximates the continuous ranked probability score. It can be interpreted as a

generalization of the absolute error to probabilistic forecasts and allows for a decomposition

into a measure of sharpness and penalties for over- and underprediction.

Author summary

During the COVID-19 pandemic, model-based probabilistic forecasts of case, hospitaliza-

tion, and death numbers can help to improve situational awareness and guide public

health interventions. The COVID-19 Forecast Hub (https://covid19forecasthub.org/) col-

lects such forecasts from numerous national and international groups. Systematic and sta-

tistically sound evaluation of forecasts is an important prerequisite to revise and improve

models and to combine different forecasts into ensemble predictions. We provide an intu-

itive introduction to scoring methods, which are suitable for the interval/quantile-based

format used in the Forecast Hub, and compare them to other commonly used perfor-

mance measures.

1. Introduction

There is a growing consensus in infectious disease epidemiology that epidemic forecasts

should be probabilistic in nature, i.e., should not only state one predicted outcome but also

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008618 February 12, 2021 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Bracher J, Ray EL, Gneiting T, Reich NG

(2021) Evaluating epidemic forecasts in an interval

format. PLoS Comput Biol 17(2): e1008618.

https://doi.org/10.1371/journal.pcbi.1008618

Editor: Virginia E. Pitzer, Yale School of Public

Health, UNITED STATES

Published: February 12, 2021

Copyright: © 2021 Bracher et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Funding: The work of JB was supported by the

Helmholtz Foundation via the SIMCARD

Information & Data Science Pilot Project. TG is

grateful for support by the Klaus Tschira

Foundation. ER and NR were supported by the US

Centers for Disease Control and Prevention

(1U01IP001122). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-3777-1410
https://orcid.org/0000-0001-9397-3271
https://orcid.org/0000-0003-3503-9899
https://covid19forecasthub.org/
https://covid19forecasthub.org/
https://doi.org/10.1371/journal.pcbi.1008618
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008618&domain=pdf&date_stamp=2021-02-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008618&domain=pdf&date_stamp=2021-02-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008618&domain=pdf&date_stamp=2021-02-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008618&domain=pdf&date_stamp=2021-02-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008618&domain=pdf&date_stamp=2021-02-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008618&domain=pdf&date_stamp=2021-02-12
https://doi.org/10.1371/journal.pcbi.1008618
http://creativecommons.org/licenses/by/4.0/


quantify their own uncertainty. This is reflected in recent forecasting challenges like the

United States Centers for Disease Control and Prevention FluSight Challenge [1] and the Den-
gue Forecasting Project [2], which required participants to submit forecast distributions for

binned disease incidence measures. Storing forecasts in this way enables the evaluation of stan-

dard scoring rules like the logarithmic score [3], which has been used in both of the aforemen-

tioned challenges. This approach, however, requires that a simple yet meaningful binning

system can be defined and is followed by all forecasters. In acute outbreak situations like the

current Coronavirus Disease 2019 (COVID-19) outbreak, where the range of observed out-

comes varies considerably across space and time and forecasts are generated under time pres-

sure, it may not be practically feasible to define a reasonable binning scheme.

An alternative is to store forecasts in the form of predictive quantiles or intervals. This is

the approach used in the COVID-19 Forecast Hub [4,5]. The Forecast Hub serves to aggregate

COVID-19 death and hospitalization forecasts in the US (both national and state levels) and is

the data source for the CDC COVID-19 forecasting web page [6]. Contributing teams are

asked to report the predictive median and central prediction intervals with nominal levels

10%, 20%,. . .,90%, 95%, 98%, meaning that the (0.01, 0.025, 0.05, 0.10, . . ., 0.95, 0.975, 0.99)

quantiles of predictive distributions have to be made available. Using such a format, predictive

distributions can be stored in reasonable detail independently of the expected range of out-

comes. However, suitably adapted scoring methods are required, e.g., the logarithmic score

cannot be evaluated based on quantiles alone. This note provides an introduction to estab-

lished quantile and interval-based scoring methods [3] with a focus on their application to epi-

demiological forecasts.

2. Forecast evaluation using proper scoring rules

2.1. Common scores to evaluate full predictive distributions

Proper scoring rules [3] are today the standard tools to evaluate probabilistic forecasts. Propri-

ety is a desirable property of a score as it encourages honest forecasting, meaning that forecast-

ers have no incentive to report forecasts differing from their true belief about the future. We

start by providing a brief overview of scores which can be applied when the full predictive dis-

tribution is available.

A widely used proper score is the logarithmic score. In the case of a discrete set of possible

outcomes {1,. . .,M} (as is the case for counts or binned measures of disease activity), it is

defined as [3]

logSðF; yÞ ¼ logðpyÞ:

Here py is the probability assigned to the observed outcome y by the forecast F. The log score is

positively oriented, meaning that larger values are better. A potential disadvantage of this score

is that it degenerates to −1 if py = 0. In the FluSight Challenge, the score is therefore truncated

at a value of −10 [7]; we note that when this truncation is performed, the score is no longer

proper.

Until the 2018/2019 edition, a variation of the logarithmic score called the multibin loga-

rithmic score was used in the FluSight Challenge. For discrete and ordered outcomes, it is

defined as [8]

MBlogSðF; yÞ ¼ logð
Xd

i¼� d

pyþiÞ;

i.e., also counts probability mass within a certain tolerance range of ±d ordered categories. The
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goal of this score is to measure “accuracy of practical significance” [9]. It thus offers a more

accessible interpretation to practitioners but has the disadvantage of being improper [10,11].

An alternative score which is considered more robust than the logarithmic score [12] is the

continuous ranked probability score

CRPSðF; yÞ ¼
Z 1

� 1

fFðxÞ � 1ðx � yÞg2dx;

where F is interpreted as a cumulative distribution function (CDF). Note that in the case of

integer-valued outcomes, the CRPS simplifies to the ranked probability score (compare

[13,14]). The CRPS represents a generalization of the absolute error to probabilistic forecasts

(implying that it is negatively oriented) and has been commonly used to evaluate epidemic

forecasts [15,16]. The CRPS does not diverge to1 even if a forecast assigns zero probability to

the eventually observed outcome, making it less sensitive to occasional misguided forecasts. It

depends on the application setting whether an extreme penalization of such “missed” forecasts

is desirable or not, and in certain contexts the CRPS may seem lenient. A practical advantage,

however, is that there is no need for thresholding it at an arbitrary value.

To facilitate an intuitive understanding of the different scores, Fig 1 graphically illustrates

the definitions of the logarithmic score (left) and CRPS (middle). For the CRPS note that if an

observation falls far into the tails of the predictive distribution, 1 of the 2 blue areas represent-

ing the CRPS will essentially disappear, while the size of the other depends approximately line-

arly on the observed value y (with a slope of 1). This illustrates the close link between the CRPS

and the absolute error.

2.2. Scores for forecasts provided in an interval format

Both the logS and the CRPS cannot be evaluated directly if forecasts are provided in an interval

format. If many intervals are provided, approximations may be feasible to some degree, but

problems arise if observations fall in the tails of predictive distributions (see Discussion sec-

tion). It is therefore advisable to apply scoring rules designed specifically for forecasts in a

quantile/interval format. A simple proper score which requires only a central (1−α)×100% pre-

diction interval (in the following: PI) is the interval score [3]

ISa F; yð Þ ¼ u � lð Þ þ
2

a
� l � yð Þ � 1 y < lð Þ þ

2

a
� y � uð Þ � 1 y > uð Þ:

Fig 1. Visualization of the logS, CRPS, and IS. Left: The logarithmic score only depends on the predictive probability assigned to the observed event y (of which one

takes the logarithm). Middle: The CRPS can be interpreted as a measure of the distance between the predictive cumulative distribution function and a vertical line at the

observed value. Right: The interval score ISα is a piecewise linear function which is constant inside the respective prediction interval and has slope ±2/α outside of it.

https://doi.org/10.1371/journal.pcbi.1008618.g001
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Here, 1 is the indicator function, meaning that 1(y<l) = 1 if y<l and 0 otherwise. The terms l
and u denote the α/2 and 1−α/2 quantiles of F. The interval score consists of 3 intuitively

meaningful quantities:

• The width u−l of the central (1−α) PI, which describes the sharpness of F;

• A penalty term 2

a
� l � yð Þ � 1 y < lð Þ for observations falling below the lower endpoint l of

the (1−α)×100% PI. The penalty is proportional to the distance between y and the lower end

l of the interval, with the strength of the penalty depending on the level α (the higher the

nominal level (1−α)×100% of the PI the more severe the penalty);

• An analoguous penalty term 2

a
� y � uð Þ � 1 y > uð Þ for observations falling above the

upper end u of the PI.

A graphical illustration of this definition can be found in the right panel of Fig 1. Note that

the interval score has recently been used to evaluate forecasts of Severe Acute Respiratory Syn-

drome Coronavirus 1 (SARS-CoV-1) and Ebola [17] as well as SARS-CoV-2 [18].

To provide more detailed information on the predictive distribution, it is common to

report not just one but several central PIs at different levels (1−α1)<(1−α2)<� � �<(1−αK),

along with the predictive median m. The latter can informally be seen as a central prediction

interval at level (1−α0)!0. To take all of these into account, a weighted interval score can be

evaluated:

WISaf0:Kg
ðF; yÞ ¼

1

K þ 1=2
� ðw0 � jy � mj þ

XK

k¼1

fwk � ISakðF; yÞgÞ ð1Þ

This score is a special case of the more general quantile score [3], and it is proper for any set of

nonnegative (unnormalized) weights w0, w1,. . .,wK. A natural choice is to set

wk ¼
ak
2

ð2Þ

with w0 = 1/2, as for large K and equally spaced values of α1,. . ., αK (stretching over the unit

interval), it can be shown that under this choice of weights

WISa0:K
ðF; yÞ � CRPSðF; yÞ ð3Þ

This follows directly from known properties of the quantile score and CRPS ([19,20]; see S1

Text). Consequently, the score can be interpreted heuristically as a measure of distance

between the predictive distribution and the true observation, where the units are those of the

absolute error, on the natural scale of the data. Indeed, in the case K = 0 where only the predic-

tive median is used, WISa0
ðF; yÞ is equal to the absolute error. Furthermore, the WIS and

CRPS reduce to the absolute error when F is a point forecast [3]. We will use the specification

(2) of the weights in the remainder of the article, but remark that different weighting schemes

may be reasonable depending on the application context.

In practice, evaluation of forecasts submitted to the COVID-19 Forecast Hub will be done

based on the predictive median and K = 11 prediction intervals with α1 = 0.02, α2 = 0.05, α3 =

0.1,. . .,α11 = 0.9 (implying nominal coverages of 98%, 95%, 90%,. . .,10%). This corresponds to

the quantiles teams are required to report in their submissions and implies that relative to the

CRPS, slightly more emphasis is given to intervals with high nominal coverage.

Similar to the interval score, the weighted interval score can be decomposed into weighted

sums of the widths of PIs and penalty terms, including the absolute error. These 2 components
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represent the sharpness and calibration of the forecasts, respectively, and can be used in graph-

ical representations of obtained scores (see section 4.1).

Note that a score corresponding to one half of what we refer to as the WIS was used in the

2014 Global Energy Forecasting Competition [21]. The score was framed as an average of pin-

ball losses for the predictive 1st through 99th percentiles. We note in this context that with the

weights wk from Eq (2) the WIS can also be expressed as

WISaf0:Kg
ðF; yÞ ¼

1

2K þ 1
�
X2Kþ1

k¼1

2� f1ðy � qtkÞ � tkg � ðqtk � yÞ ð4Þ

see S1 Text. Here, the levels 0<τ1<� � �<τK+1 = 1/2<� � �<τ2K+1<1 and the associated quantiles

qt1 ; . . . ; qt2Kþ1
correspond to the median and the 2K quantiles defining the central PIs at levels

1−α1,. . ., 1−αK. In this paper, we preferred to motivate the score through central predictive

intervals at different levels, which are a commonly used concept in epidemiology. However,

when applying, e.g., quantile regression methods for ensemble building, formulation (4) may

seem more natural.

2.3. Aggregation of scores

To compare different prediction methods systematically, it is necessary to aggregate the scores

they achieved over time and for various forecast targets. The natural way of aggregating proper

scores is via their sum or average [3], as this ensures that propriety is maintained. If forecasts

are made at several different horizons, it is often helpful to also inspect average scores sepa-

rately by horizon and assess how forecast quality deteriorates over time. Scores for longer time

horizons often tend to show larger variability and can dominate average scores. This is espe-

cially true when forecasting cumulative case or death numbers, where forecast errors build up

over time, and a stratified analysis can be more informative in this case.

It may be of interest to formally assess the strength of evidence that there is a difference in

mean forecast skill between methods. Various tests exist to this end, the most commonly used

being the Diebold-Mariano test [22]. However, this test does not have a widely accepted exten-

sion to account for dependencies between multiple forecasts made for different time-series or

locations. Similar challenges arise when predictions at multiple horizons are issued at the same

time. An interesting strategy in this context is to treat these predictions as a path forecast and

assess them jointly [23,24]. Generally, theoretically principled methods for multivariate fore-

cast evaluation exist [25] and have found applications in disease forecasting [15].

A topic closely related to path forecasting is forecasting of more qualitative or longer-term

characteristics of an epidemic curve. For instance, in the FluSight challenges [1], forecasts for

the timing and strength of seasonal peaks have been assessed. While such targets can be of

great interest from a public health perspective, it is not always obvious how to define them for

an emerging rather than seasonal disease. A possibility would be to consider maximum weekly

incidences over a gliding time window. This could provide additional information on the peak

healthcare demand expected over a given time period, an aspect which is often not reflected

well in independent week-wise forecasts [26].

3. Qualitative comparison for different scores

We now compare various scores using simple examples, covering scores for point predictions,

prediction intervals, and full predictive distributions.
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3.1. Illustration for an integer-valued outcome

Fig 2 illustrates the behavior of 5 different scores for a negative binomial predictive distribu-

tion F with expectation μF = 60 and size parameter ψF = 4 (standard deviation�31.0). We con-

sider the logarithmic score, absolute error, interval score with α = 0.2 (IS0.2), CRPS, and 2

versions of the weighted interval score. Firstly, we consider a score with K = 3 and α1 = 0.1, α2

= 0.4, α3 = 0.7, which we denote by WIS�. Secondly, we consider a more detailed score with

K = 11 and α1 = 0.02, α2 = 0.05, α3 = 0.1,. . ., α11 = 0.9, denoted by WIS (as this is the version

used in the COVID-19 Forecast Hub, we will focus on it in the remainder of the article). The

resulting scores are shown as a function of the observed value y. Qualitatively all curves look

similar. However, some differences can be observed. The best (lowest) negative logS is

Fig 2. Illustration of different scoring rules. Logarithmic score, absolute error, interval score (with α = 0.2), CRPS, and 2 versions of the weighted interval score.

These are denoted by WIS� (with K =3, α1 = 0.1, α2 = 0.4, α3 = 0.7) and WIS (K = 11, α1 = 0.02, α2 = 0.05, α3 = 0.1,. . .,α11 = 0.9). Scores are shown as a

function of the observed value y. The predictive distribution F is negative binomial with expectation 60 and size 4. Note that the top left panel shows the negative

logS, i.e., −logS, which, like the other scores, is negatively oriented (smaller values are better).

https://doi.org/10.1371/journal.pcbi.1008618.g002
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achieved if the observation y coincides with the predictive mode. For the interval-based scores,

AE and CRPS, the best value results if y equals the median (for the IS0.2 in the middle right

panel, there is a plateau as it does not distinguish between values falling into the 80% PI). The

negative logS curve is more smooth and increases the more steeply the further away the

observed y is from the predictive mode. The curve shows some asymmetry, which is absent or

less pronounced in the other plots. The IS and WIS curves are piecewise linear. The WIS has a

more modest slope closer to the median and a more pronounced one toward the tails

(approaching −1 and 1 in the left and right tail, respectively). Both versions of the WIS repre-

sent a good approximation to the CRPS. For the more detailed version with 11 intervals plus

the absolute error, slight differences to the CRPS can only be seen in the extreme upper tail.

When comparing the CRPS and WIS�/WIS scores to the absolute error, it can be seen that the

latter are larger in the immediate surroundings of the median (and always greater than zero),

but lower toward the tails. This is because they also take into account the uncertainty in the

forecast distribution.

3.2. Differing behaviour if agreement between predictions and observations

is poor

Qualitative differences between the logarithmic and interval-based scores occur predomi-

nantly if observations fall into the tails of predictive distributions.

We illustrate this with a second example. Consider 2 negative binomial forecasts: F with

expectation 60 and size 4 (standard deviation�31) as before, and G with expectation 80, and

size 10 (standard deviation�26.8). G thus has higher expectation than F and is sharper. If we

now observe y = 190, i.e., a count considerably higher than suggested by either F or G, the 2

scores yield different results, as illustrated in Fig 3.

• The logS favors F over G, as the former is more dispersed and has slightly heavier tails.

Therefore y = 190 is considered somewhat more “plausible” under F than under G (logS(F,

190) = −9.37, logS(G, 190) = −9.69);

• The WIS (with K = 11 as in the previous section), on the other hand, favors G as its quantiles

are generally closer to the observed value y (WIS(F, 190) = 103.9, WIS(G, 190) = 87.8).

Fig 3. Disagreement between logarithmic score and WIS. Negative logarithmic score and weighted interval score (with α1 = 0.02, α2 = 0.05, α3 = 0.1,. . .,α11 = 0.9) as a

function of the observed value y. The predictive distributions F (green) and G (red) are negative binomials with expectations μF = 60, μG = 80 and sizes ψF = 4, ψG = 10.

The black dashed line shows y = 190 as discussed in the text.

https://doi.org/10.1371/journal.pcbi.1008618.g003
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This behavior of the WIS is referred to as sensitivity to distance [3]. In contrast, the logS is a

local score which ignores distance. Winkler [27] argues that local scoring rules can be more

suitable for inferential problems, while sensitivity to distance is reasonable in many decision-

making settings. In the public health context, say a prediction of hospital bed need on a certain

day in the future, it could be argued that for y = 190, the forecast G was indeed more useful

than F. While a pessimistic scenario under G (defined as the 95% quantile of the predictive dis-

tribution) implies 128 beds needed and thus fell considerably short of y = 190, it still suggested

more adequate need for preparation than F, which has a 95% quantile of 118.

We argue that poor agreement between forecasts and observations is more likely to occur

for COVID-19 deaths than, e.g., for seasonal ILI (influenza-like illness) intensity, which due to

larger amounts of historical data is more predictable. Sensitivity to distance then leads to more

robust scoring with respect to decision-making, without the need to truncate at an arbitrary

value (as required for the log score). While these are pragmatic statistical considerations, it

could be argued that the choice of scoring rule should depend on the cost of different types of

errors. If the cost of single misguided forecasts is very high, a conservative evaluation approach

using the logarithmic score may be more appropriate. This question is obviously linked to the

preferences and priorities of forecasts recipients, in our case public health officials and the gen-

eral public. Studying these preferences in more detail is an interesting avenue for further

research.

4. Application to FluSight forecasts

In this section, some additional practical aspects are discussed using historical forecasts from

the 2016/2017 edition of the FluSight Challenge. Note that these were originally reported in a

binned format, but for illustration, we translated them to a quantile format for some of the

below examples.

4.1. An easily interpretable graphic display of the WIS

The decomposition of the WIS into the average width of PIs and average penalty for observa-

tions outside the various PIs (see section 2.1) enables an intuitive graphical display to compare

different forecasts and understand why one forecast outperforms another. Distinguishing also

between penalties for over- and underprediction can be informative about systematic biases or

asymmetries. Note that decompositions of quantile or interval scores for visualization pur-

poses have been suggested before (see, e.g., [28]).

Fig 4 shows a comparison of the IS0.2 and WIS (with K = 11 as before) obtained for

1-week-ahead forecasts by the KCDE and SARIMA models during the 2016/2017 FluSight
Challenge, [9,29], using data obtained from [30]. It can be seen that, while KCDE and SAR-

IMA issued forecasts of similar sharpness (average widths of PIs, blue bars), SARIMA is

more strongly penalized for PIs not covering the observations (orange and red bars). Broken

down to a single number, the bottom right panel shows that predictions from KCDE and

SARIMA were on average off by 0.25 and 0.35 percentage points, respectively (after taking

into account the uncertainty implied by their predictions). Both methods are somewhat con-

servative, with 80% PIs covering 88% (SARIMA) and 100% of the observations (KCDE).

When comparing the plots for IS0.2 and WIS, it can be seen that the former strongly punishes

larger discrepancies between forecasts and observations while ignoring smaller differences.

The latter translates discrepancies to penalties in a smoother fashion, as could already be

seen in Fig 2.
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4.2. Visually assessing calibration

While the middle row of Fig 4 provides a good intuition of the sharpness of different forecasts,

different visual tools exist to assess their calibration. A commonly used approach is via proba-

bility integral transform (PIT) histograms ([13,31]; see also [15]) for adaptations to count data.

These show the empirical distribution of

PITðF; yobsÞ ¼ FðyobsÞ

across different forecasts from the same model. Here F represents the predictive cumulative

distribution function. For a calibrated forecast, the PIT histogram should be approximately

uniform, and deviations from uniformity indicate bias or problems with the dispersion of fore-

casts. For example, L-shaped PIT histograms indicate a downward bias of forecasts, while a J

shape indicates an upward bias. Under- and overdispersed forecasts lead to U and inverse-U-

Fig 4. Interval and weighted interval score applied to FluSight forecasts. Comparison of 1-week-ahead forecasts by KCDE and SARIMA over the course of the 2016/

2017 FluSight season. The top row shows the interval score with α = 0.2, the bottom row the weighted interval score with α1 = 0.02, α2 = 0.05, α3 = 0.1,. . ., α11 = 0.9. The

panels at the right show mean scores over the course of the season. All bars are decomposed into the contribution of interval widths (i.e., a measure of sharpness; blue) and

penalties for over- and underprediction (orange and red, respectively). Note that the absolute values of the 2 scores are not directly comparable as the WIS involves

rescaling of the included interval scores.

https://doi.org/10.1371/journal.pcbi.1008618.g004
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shaped PIT histograms, respectively. Fig 5 shows PIT histograms for 1-week-ahead forecasts

from KCDE and SARIMA. While no apparent biases can be seen, both models seem to pro-

duce forecasts with too high dispersion. This is especially visible for KCDE, for which hardly

any realizations fell into the 2 extreme deciles of the respective forecast distributions.

The exact PIT values cannot be computed if forecasts are reported in a quantile format, but

if sufficiently many quantiles are available one can evaluate in which decile or ventile they fall.

This is sufficient to represent them graphically in a histogram with the respective number of

bins. A technical problem arises if an observation is exactly equal to one or several of the

reported quantiles (which can happen especially in low count settings). The corrections for

discreteness suggested by [13] cannot be applied in this case and there does not seem to be a

standard approach for this. A practical strategy is to split up such a count between the neigh-

boring bins of the histogram (assigning 1/2 to each bin if the realized value coincides with one

reported quantile, 1/4, 1/2, 1/4 if it coincides with two, 1/6, 1/3, 1/3, 1/6 if it coincides with

three, and so on).

4.3. Empirical agreement between different scores

To explore the agreement between different scores, we applied several of them to 1- through

4-week-ahead forecasts from the 2016/2017 edition of the FluSight Challenge. We compare the

negative logarithmic score, the negative multibin logarithmic score with a tolerance of 0.5 per-

centage points (both with truncation at −10), the CRPS, the absolute error of the median, the

interval score with α = 0.2, and the weighted interval score (with K = 11 and α1 = 0.02, α2 =

0.05, α3 = 0.1,. . ., α11 = 0.9 as in the previous sections). To evaluate the CRPS and interval

scores, we simply identified each bin with its central value to which a point mass was assigned.

Fig 6 shows scatterplots of mean scores achieved by 26 models (averaged over weeks, forecast

horizons, and geographical levels; the naïve uniform model was removed as it performs clearly

worst under almost all metrics).

As expected, the 3 interval-based scores correlate more strongly with the CRPS and the

absolute error than with the logarithmic score. Agreement between the WIS and CRPS is

almost perfect, meaning that in this example, the approximation (3) works quite well based on

the 23 available quantiles. Agreement between the interval-based score and the logS is

Fig 5. PIT histograms. PIT histograms for 1-week-ahead forecasts from the KCDE and SARIMA models, 2016–2017

FluSight season. Note that to account for the discreteness of the binned distribution, we employed the nonrandomized

correction suggested in [13].

https://doi.org/10.1371/journal.pcbi.1008618.g005
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Fig 6. Comparison of 26 models participating in the 2016/2017 FluSight Challenge under different scoring rules.

Shown are mean scores averaged over 1- through 4-week-ahead forecasts, different geographical levels, weeks, and

forecast horizons. Compared scores: negative logarithmic score and multibin logarithmic score, continuous ranked

probability score, interval score (α = 0.2), weighted interval score with K = 11. Plots comparing the WIS to CRPS and

AE, respectively, also show the diagonal in gray as these 3 scores operate on the same scale. All shown scores are

negatively oriented. The models FluOutlook_Mech and FluOutlook_MechAug are highlighted in orange as they

rank very differently under different scores.

https://doi.org/10.1371/journal.pcbi.1008618.g006
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mediocre, in part because the models FluOutlook-Mech and FluOutlook-MechAug
receive comparatively good interval-based scores (as well as CRPS, absolute errors and even

MBlogS), but exceptionally poor logS. The reason is that while having a rather accurate central

tendency, they are too sharp with tails that are too light. This is sanctioned severely by the loga-

rithmic score, but much less so by the other scores (this is related to the discussion in section

3.2). The WIS score (and thus also the CRPS) shows remarkably good agreement with the

MBlogS, indicating that distance-sensitive scores may be able to formalize the idea of a score

which is slightly more "generous" than the logS while maintaining propriety. Interestingly, all

scores agree that the 3 best models are LANL-DBMplus, Protea-Cheetah, and Pro-
tea Springbok.

5. A brief remark on evaluating point forecasts

While the main focus of this note is on the evaluation of forecast intervals, we also briefly

address how point forecasts submitted to the COVID-19 Forecast Hub will be evaluated. As in

the FluSight Challenge [7], the absolute error (AE) will be applied. This implies that teams

should report the predictive median as a point forecast [32]. Using the absolute error in combi-

nation with WIS is appealing as both can be reported on the same scale (that of the observa-

tions). Indeed, as mentioned before, the absolute error is the same as the WIS (and CPRS) of a

distribution putting all probability mass on the point forecast.

The absolute error, when averaged across time and space, is dominated by forecasts from

larger states and weeks with high activity (this also holds true for the CRPS and WIS). One

may thus be tempted to use a relative measure of error instead, such as the mean absolute per-

centage error (MAPE). We argue, however, that emphasizing forecasts of targets with higher

expected values is meaningful. For instance, there should be a larger penalty for forecasting

200 deaths if 400 are eventually observed than for forecasting 2 deaths if 4 are observed. Rela-

tive measures like the MAPE would treat both the same. Moreover, the MAPE does not

encourage reporting predictive medians nor means, but rather obscure and difficult to inter-

pret types of point forecasts [14,32]. It should therefore be used with caution.

6. Discussion

In this paper we have provided a practical and hopefully intuitive introduction on the evalua-

tion of epidemic forecasts provided in an interval or quantile format. It is worth emphasizing

that the concepts underlying the suggested procedure are by no means new or experimental.

Indeed, they can be traced back to [33,34]. As mentioned before, a special case of the WIS was

used in the 2014 Global Energy Forecasting Competition [21]. A scaled version of the interval

score was used in the 2018 M4 forecasting competition [35]. The ongoing M5 competition

uses the so-called weighted scaled pinball loss (WSPL), which can be seen as a scaled version of

the WIS based on the predictive median and 50%, 67%, 95%, and 99% PIs [36].

Note that we restrict attention to the case of central prediction intervals, so that each predic-

tion interval is clearly associated with 2 quantiles. The evaluation of prediction intervals which

are not restricted to be central is conceptually challenging [37,38], and we refrain from adding

this complexity.

The method advocated in this note corresponds to an approximate CRPS computed from

prediction intervals at various levels. A natural question is whether such an approximation

would also be feasible for the logarithmic score, leading to an evaluation metric closer to that

from the FluSight Challenge. We see 2 principal difficulties with such an approach. Firstly,

some sort of interpolation method would be needed to obtain an approximate density or prob-

ability mass function within the provided intervals. While the best way to do this is not
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obvious, a pragmatic solution could likely be found. A second problem, however, would

remain: For observations outside of the prediction interval with the highest nominal coverage

(98% for the COVID-19 Forecast Hub), there is no easily justifiable way of approximating the

logarithmic score, as the analyst necessarily has to make strong assumptions on the tail behav-

ior of the forecast. As such poor forecasts typically have a strong impact on the average log

score, they cannot be neglected. And given that forecasts are often evaluated for many loca-

tions (e.g., over 50 US states and territories), even for a perfectly calibrated model, there will

on average be one such observation falling in the far tail of a predictive distribution every

week. One could think about including even more extreme quantiles to remedy this, but fore-

casters may not be comfortable issuing these and the conceptual problem would remain. This

is linked to the general problem of low robustness of the logarithmic score. We therefore argue

that especially in contexts with low predictability such as the current COVID-19 pandemic,

distance-sensitive scores like the CRPS or WIS are an attractive option.

Supporting information

S1 Text. Mathematical derivation of the relationship between quantile score, interval

score, and CRPS.

(PDF)
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