141 research outputs found

    Asymptotic forms for hard and soft edge general β\beta conditional gap probabilities

    Full text link
    An infinite log-gas formalism, due to Dyson, and independently Fogler and Shklovskii, is applied to the computation of conditioned gap probabilities at the hard and soft edges of random matrix β\beta-ensembles. The conditioning is that there are nn eigenvalues in the gap, with ntn \ll |t|, tt denoting the end point of the gap. It is found that the entropy term in the formalism must be replaced by a term involving the potential drop to obtain results consistent with known asymptotic expansions in the case n=0n=0. With this modification made for general nn, the derived expansions - which are for the logarithm of the gap probabilities - are conjectured to be correct up to and including terms O(logt)(\log|t|). They are shown to satisfy various consistency conditions, including an asymptotic duality formula relating β\beta to 4/β4/\beta.Comment: Replaces v2 which contains typographical errors arising from a previous unpublished draf

    Non-canonical functions of the RB protein in cancer

    Get PDF
    The canonical model of RB-mediated tumour suppression developed over the past 30 years is based on the regulation of E2F transcription factors to restrict cell cycle progression. Several additional functions have been proposed for RB, on the basis of which a non-canonical RB pathway can be described. Mechanistically, the non-canonical RB pathway promotes histone modification and regulates chromosome structure in a manner distinct from cell cycle regulation. These functions have implications for chemotherapy response and resistance to targeted anticancer agents. This Opinion offers a framework to guide future studies of RB in basic and clinical research

    Mean-field driven first-order phase transitions in systems with long-range interactions

    Full text link
    We consider a class of spin systems on Zd\Z^d with vector valued spins (\bS_x) that interact via the pair-potentials J_{x,y} \bS_x\cdot\bS_y. The interactions are generally spread-out in the sense that the Jx,yJ_{x,y}'s exhibit either exponential or power-law fall-off. Under the technical condition of reflection positivity and for sufficiently spread out interactions, we prove that the model exhibits a first-order phase transition whenever the associated mean-field theory signals such a transition. As a consequence, e.g., in dimensions d3d\ge3, we can finally provide examples of the 3-state Potts model with spread-out, exponentially decaying interactions, which undergoes a first-order phase transition as the temperature varies. Similar transitions are established in dimensions d=1,2d=1,2 for power-law decaying interactions and in high dimensions for next-nearest neighbor couplings. In addition, we also investigate the limit of infinitely spread-out interactions. Specifically, we show that once the mean-field theory is in a unique ``state,'' then in any sequence of translation-invariant Gibbs states various observables converge to their mean-field values and the states themselves converge to a product measure.Comment: 57 pages; uses a (modified) jstatphys class fil

    Key Roles for E2F1 in Signaling p53-Dependent Apoptosis and in Cell Division within Developing Tumors

    Get PDF
    AbstractApoptosis induced by the p53 tumor suppressor can attenuate cancer growth in preclinical animal models. Inactivation of the pRb proteins in mouse brain epithelium by the T121 oncogene induces aberrant proliferation and p53-dependent apoptosis. p53 inactivation causes aggressive tumor growth due to an 85% reduction in apoptosis. Here, we show that E2F1 signals p53-dependent apoptosis since E2F1 deficiency causes an 80% apoptosis reduction. E2F1 acts upstream of p53 since transcriptional activation of p53 target genes is also impaired. Yet, E2F1 deficiency does not accelerate tumor growth. Unlike normal cells, tumor cell proliferation is impaired without E2F1, counterbalancing the effect of apoptosis reduction. These studies may explain the apparent paradox that E2F1 can act as both an oncogene and a tumor suppressor in experimental systems

    LKB1 loss links serine metabolism to DNA methylation and tumorigenesis

    Get PDF
    Intermediary metabolism generates substrates for chromatin modification, enabling the potential coupling of metabolic and epigenetic states. Here we identify a network linking metabolic and epigenetic alterations that is central to oncogenic transformation downstream of the liver kinase B1 (LKB1, also known as STK11) tumour suppressor, an integrator of nutrient availability, metabolism and growth. By developing genetically engineered mouse models and primary pancreatic epithelial cells, and employing transcriptional, proteomics, and metabolic analyses, we find that oncogenic cooperation between LKB1 loss and KRAS activation is fuelled by pronounced mTOR-dependent induction of the serine-glycine-one-carbon pathway coupled to S-adenosylmethionine generation. At the same time, DNA methyltransferases are upregulated, leading to elevation in DNA methylation with particular enrichment at retrotransposon elements associated with their transcriptional silencing. Correspondingly, LKB1 deficiency sensitizes cells and tumours to inhibition of serine biosynthesis and DNA methylation. Thus, we define a hypermetabolic state that incites changes in the epigenetic landscape to support tumorigenic growth of LKB1-mutant cells, while resulting in potential therapeutic vulnerabilities

    Functional Identification of Api5 as a Suppressor of E2F-Dependent Apoptosis In Vivo

    Get PDF
    Retinoblastoma protein and E2-promoter binding factor (E2F) family members are important regulators of G1-S phase progression. Deregulated E2F also sensitizes cells to apoptosis, but this aspect of E2F function is poorly understood. Studies of E2F-induced apoptosis have mostly been carried out in tissue culture cells, and the analysis of the factors that are important for this process has been restricted to the testing of a few candidate genes. Using Drosophila as a model system, we have generated tools that allow genetic modifiers of E2F-dependent apoptosis to be identified in vivo and developed assays that allow effects on E2F-induced apoptosis to be studied in cultured cells. Genetic interactions show that dE2F1-dependent apoptosis in vivo involves dArk/Apaf1 apoptosome-dependent activation of both initiator and effector caspases and is sensitive to levels of Drosophila inhibitor of apoptosis-1 (dIAP1). Using these approaches, we report the surprising finding that apoptosis inhibitor-5/antiapoptosis clone-11 (Api5/Aac11) is a critical determinant of dE2F1-induced apoptosis in vivo and in vitro. This functional interaction occurs in multiple tissues, is specific to E2F-induced apoptosis, and is conserved from flies to humans. Interestingly, Api5/Aac11 acts downstream of E2F and suppresses E2F-dependent apoptosis without generally blocking E2F-dependent transcription. Api5/Aac11 expression is often upregulated in tumor cells, particularly in metastatic cells. We find that depletion of Api5 is tumor cell lethal. The strong genetic interaction between E2F and Api5/Aac11 suggests that elevated levels of Api5 may be selected during tumorigenesis to allow cells with deregulated E2F activity to survive under suboptimal conditions. Therefore, inhibition of Api5 function might offer a possible mechanism for antitumor exploitation

    E2F and p53 Induce Apoptosis Independently during Drosophila Development but Intersect in the Context of DNA Damage

    Get PDF
    In mammalian cells, RB/E2F and p53 are intimately connected, and crosstalk between these pathways is critical for the induction of cell cycle arrest or cell death in response to cellular stresses. Here we have investigated the genetic interactions between RBF/E2F and p53 pathways during Drosophila development. Unexpectedly, we find that the pro-apoptotic activities of E2F and p53 are independent of one another when examined in the context of Drosophila development: apoptosis induced by the deregulation of dE2F1, or by the overexpression of dE2F1, is unaffected by the elimination of dp53; conversely, dp53-induced phenotypes are unaffected by the elimination of dE2F activity. However, dE2F and dp53 converge in the context of a DNA damage response. Both dE2F1/dDP and dp53 are required for DNA damage-induced cell death, and the analysis of rbf1 mutant eye discs indicates that dE2F1/dDP and dp53 cooperatively promote cell death in irradiated discs. In this context, the further deregulation in the expression of pro-apoptotic genes generates an additional sensitivity to apoptosis that requires both dE2F/dDP and dp53 activity. This sensitivity differs from DNA damage-induced apoptosis in wild-type discs (and from dE2F/dDP-induced apoptosis in un-irradiated rbf1 mutant eye discs) by being dependent on both hid and reaper. These results show that pro-apoptotic activities of dE2F1 and dp53 are surprisingly separable: dp53 is required for dE2F-dependent apoptosis in the response to DNA damage, but it is not required for dE2F-dependent apoptosis caused simply by the inactivation of rbf1
    corecore