126 research outputs found

    Obesity alters the muscle protein synthetic response to nutrition and exercise

    Get PDF
    Improving the health of skeletal muscle is an important component of obesity treatment. Apart from allowing for physical activity, skeletal muscle tissue is fundamental for the regulation of postprandial macronutrient metabolism, a time period that represents when metabolic derangements are most often observed in adults with obesity. In order for skeletal muscle to retain its capacity for physical activity and macronutrient metabolism, its protein quantity and composition must be maintained through the efficient degradation and resynthesis for proper tissue homeostasis. Life-style behaviors such as increasing physical activity and higher protein diets are front-line treatment strategies to enhance muscle protein remodeling by primarily stimulating protein synthesis rates. However, the muscle of individuals with obesity appears to be resistant to the anabolic action of targeted exercise regimes and protein ingestion when compared to normal-weight adults. This indicates impaired muscle protein remodeling in response to the main anabolic stimuli to human skeletal muscle tissue is contributing to poor muscle health with obesity. Deranged anabolic signaling related to insulin resistance, lipid accumulation, and/or systemic/muscle inflammation are likely at the root of the anabolic resistance of muscle protein synthesis rates with obesity. The purpose of this review is to discuss the impact of protein ingestion and exercise on muscle protein remodeling in people with obesity, and the potential mechanisms underlining anabolic resistance of their muscle

    Validation of a single biopsy approach and bolus protein feeding to determine myofibrillar protein synthesis in stable isotope tracer studies in humans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Minimizing the number of muscle biopsies has important methodological implications and minimizes subject discomfort during a stable isotope amino acid infusion. We aimed to determine the reliability of obtaining a single muscle biopsy for the calculation of muscle protein fractional synthetic rate (FSR) as well as the amount of incorporation time necessary to obtain that biopsy after initiating a stable isotope infusion (Study 1). The calculation of muscle protein FSR requires tracer steady-state during the stable isotope infusion. Therefore, a second aim was to examine if steady-state conditions are compromised in the precursor pools (plasma free or muscle intracellular [IC]) after ingestion of a tracer enriched protein drink and after resistance exercise (Study 2).</p> <p>Methods</p> <p>Sixteen men (23 ± 3 years; BMI = 23.8 ± 2.2 kg/m<sup>2</sup>, means ± SD) were randomized to perform Study 1 or Study 2 (n = 8, per study). Subjects received a primed, constant infusion of L-[<it>ring</it>-<sup>13</sup>C<sub>6</sub>]phenylalanine coupled with muscle biopsies of the vastus lateralis to measure rates of myofibrillar protein synthesis (MPS). Subjects in Study 2 were fed 25 g of whey protein immediately after an acute bout of unilateral resistance exercise.</p> <p>Results</p> <p>There was no difference (P = 0.3) in rates of MPS determined using the steady-state precursor-product equation and determination of tracer incorporation between sequential biopsies 150 min apart or using plasma protein as the baseline enrichment, provided the infusion length was sufficient (230 ± 0.3 min). We also found that adding a modest amount of tracer (4% enriched), calculated based on the measured phenylalanine content of the protein (3.5%) in the drink, did not compromise steady-state conditions (slope of the enrichment curve not different from zero) in the plasma free or, more importantly, the IC pool (both P > 0.05).</p> <p>Conclusions</p> <p>These data demonstrate that the single biopsy approach yields comparable rates of muscle protein synthesis, provided a longer incorporation time is utilized, to that seen with a traditional two biopsy approach. In addition, we demonstrate that enriching protein-containing drinks with tracer does not disturb isotopic steady-state and thus both are reliable techniques to determine rates of MPS in humans.</p

    Anabolic resistance of muscle protein turnover comes in various shapes and sizes

    Get PDF
    Anabolic resistance is defined by a blunted stimulation of muscle protein synthesis rates (MPS) to common anabolic stimuli in skeletal muscle tissue such as dietary protein and exercise. Generally, MPS is the target of most exercise and feeding interventions as muscle protein breakdown rates seem to be less responsive to these stimuli. Ultimately, the blunted responsiveness of MPS to dietary protein and exercise underpins the loss of the amount and quality of skeletal muscle mass leading to decrements in physical performance in these populations. The increase of both habitual physical activity (including structured exercise that targets general fitness characteristics) and protein dense food ingestion are frontline strategies utilized to support muscle mass, performance, and health. In this paper, we discuss anabolic resistance as a common denominator underpinning muscle mass loss with aging, obesity, and other disease states. Namely, we discuss the fact that anabolic resistance exists as a dimmer switch, capable of varying from higher to lower levels of resistance, to the main anabolic stimuli of feeding and exercise depending on the population. Moreover, we review the evidence on whether increased physical activity and targeted exercise can be leveraged to restore the sensitivity of skeletal muscle tissue to dietary amino acids regardless of the population

    Intestine-specific deletion of microsomal triglyceride transfer protein increases mortality in aged mice

    Get PDF
    BACKGROUND:Mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO) exhibit a complete block in chylomicron assembly together with lipid malabsorption. Young (8-10 week) Mttp-IKO mice have improved survival when subjected to a murine model of Pseudomonas aeruginosa-induced sepsis. However, 80% of deaths in sepsis occur in patients over age 65. The purpose of this study was to determine whether age impacts outcome in Mttp-IKO mice subjected to sepsis. METHODS:Aged (20-24 months) Mttp-IKO mice and WT mice underwent intratracheal injection with P. aeruginosa. Mice were either sacrificed 24 hours post-operatively for mechanistic studies or followed seven days for survival. RESULTS:In contrast to young septic Mttp-IKO mice, aged septic Mttp-IKO mice had a significantly higher mortality than aged septic WT mice (80% vs. 39%, p = 0.005). Aged septic Mttp-IKO mice exhibited increased gut epithelial apoptosis, increased jejunal Bax/Bcl-2 and Bax/Bcl-XL ratios yet simultaneously demonstrated increased crypt proliferation and villus length. Aged septic Mttp-IKO mice also manifested increased pulmonary myeloperoxidase levels, suggesting increased neutrophil infiltration, as well as decreased systemic TNFα compared to aged septic WT mice. CONCLUSIONS:Blocking intestinal chylomicron secretion alters mortality following sepsis in an age-dependent manner. Increases in gut apoptosis and pulmonary neutrophil infiltration, and decreased systemic TNFα represent potential mechanisms for why intestine-specific Mttp deletion is beneficial in young septic mice but harmful in aged mice as each of these parameters are altered differently in young and aged septic WT and Mttp-IKO mice

    Integrin-associated ILK and PINCH1 protein content are reduced in skeletal muscle of maintenance haemodialysis patients

    Get PDF
    Key points: Patients with renal failure undergoing maintenance haemodialysis are associated with insulin resistance and protein metabolism dysfunction. Novel research suggests that disruption to the transmembrane protein linkage between the cytoskeleton and the extracellular matrix in skeletal muscle may contribute to reduced amino acid metabolism and insulin resistance in haemodialysis. ILK, PINCH1 and pFAKTyr397 were significantly decreased in haemodialysis compared to controls, whereas Rac1 and Akt2 showed no different between groups. Rac1 deletion in the Rac1 knockout model did not alter the expression of integrin-associated proteins. Phenylalanine kinetics were reduced in the haemodialysis group at 30 and 60 min post meal ingestion compared to controls; both groups showed similar levels of insulin sensitivity and β-cell function. Key proteins in the integrin–cytoskeleton linkage are reduced in haemodialysis patients, suggesting for the first time that integrin-associated proteins dysfunction may contribute to reduced phenylalanine flux without affecting insulin resistance in haemodialysis patients. Abstract: Muscle atrophy, insulin resistance and reduced muscle phosphoinositide 3-kinase-Akt signalling are common characteristics of patients undergoing maintenance haemodialysis (MHD). Disruption to the transmembrane protein linkage between the cytoskeleton and the extracellular matrix in skeletal muscle may contribute to reduced amino acid metabolism and insulin resistance in MHD patients. Eight MHD patients (age: 56 ± 5 years: body mass index: 32 ± 2 kg m–2) and non-diseased controls (age: 50 ± 2 years: body mass index: 31 ± 1 kg m–2) received primed continuous l-[ring-2H5]phenylalanine before consuming a mixed meal. Phenylalanine metabolism was determined using two-compartment modelling. Muscle biopsies were collected prior to the meal and at 300 min postprandially. In a separate experiment, skeletal muscle tissue from muscle-specific Rac1 knockout (Rac1 mKO) was harvested to investigate whether Rac1 depletion disrupted the cytoskeleton-integrin linkage, allowing for cross-model examination of proteins of interest. ILK, PINCH1 and pFAKTyr397 were significantly lower in MHD (P

    An assessment of particulate organic carbon to thorium-234 ratios in the ocean and their impact on the application of 234Th as a POC flux proxy

    Get PDF
    Author Posting. © The Authors, 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Marine Chemistry 100 (2006): 213-233, doi:10.1016/j.marchem.2005.10.013.Thorium-234 is increasingly used as a tracer of ocean particle flux, primarily as a means to estimate particulate organic carbon export from the surface ocean. This requires determination of both the 234Th activity distribution (in order to calculate 234Th fluxes) and an estimate of the C/234Th ratio on sinking particles, to empirically derive C fluxes. In reviewing C/234Th variability, results obtained using a single sampling method show the most predictable behavior. For example, in most studies that employ in situ pumps to collect size fractionated particles, C/234Th either increases or is relatively invariant with increasing particle size (size classes >1 to 100’s μm). Observations also suggest that C/234Th decreases with depth and can vary significantly between regions (highest in blooms of large diatoms and highly productive coastal settings). Comparisons of C fluxes derived from 234Th show good agreement with independent estimates of C flux, including mass balances of C and nutrients over appropriate space and time scales (within factors of 2-3). We recommend sampling for C/234Th from a standard depth of 100 m, or at least one depth below the mixed layer using either large volume size fractionated filtration to capture the rarer large particles, or a sediment trap or other device to collect sinking particles. We also recommend collection of multiple 234Th profiles and C/234Th samples during the course of longer observation periods to better sample temporal variations in both 234Th flux and the characteristic of sinking particles. We are encouraged by new technologies which are optimized to more reliably sample truly settling particles, and expect the utility of this tracer to increase, not just for upper ocean C fluxes but for other elements and processes deeper in the water column.Individuals and science efforts discussed herein were supported by many national science programs, including the U.S. National Science Foundation and U.S. Department of Energy. S.F. and J.C.M. acknowledge the support provided to the International Atomic Energy Agency (IAEA) Marine Environment Laboratory by the Government of the Principality of Monaco. T.T. acknowledges support from the Australian Antarctic Science Program. K.B. was supported in part by a WHOI Ocean Life Institute Fellowship

    Low-Load High Volume Resistance Exercise Stimulates Muscle Protein Synthesis More Than High-Load Low Volume Resistance Exercise in Young Men

    Get PDF
    BACKGROUND: We aimed to determine the effect of resistance exercise intensity (%1 repetition maximum-1RM) and volume on muscle protein synthesis, anabolic signaling, and myogenic gene expression. METHODOLOGY/PRINCIPAL FINDINGS: Fifteen men (21+/-1 years; BMI=24.1+/-0.8 kg/m2) performed 4 sets of unilateral leg extension exercise at different exercise loads and/or volumes: 90% of repetition maximum (1RM) until volitional failure (90FAIL), 30% 1RM work-matched to 90%FAIL (30WM), or 30% 1RM performed until volitional failure (30FAIL). Infusion of [ring-13C6] phenylalanine with biopsies was used to measure rates of mixed (MIX), myofibrillar (MYO), and sarcoplasmic (SARC) protein synthesis at rest, and 4 h and 24 h after exercise. Exercise at 30WM induced a significant increase above rest in MIX (121%) and MYO (87%) protein synthesis at 4 h post-exercise and but at 24 h in the MIX only. The increase in the rate of protein synthesis in MIX and MYO at 4 h post-exercise with 90FAIL and 30FAIL was greater than 30WM, with no difference between these conditions; however, MYO remained elevated (199%) above rest at 24 h only in 30FAIL. There was a significant increase in AktSer473 at 24h in all conditions (P=0.023) and mTORSer2448 phosphorylation at 4 h post-exercise (P=0.025). Phosporylation of Erk1/2Tyr202/204, p70S6KThr389, and 4E-BP1Thr37/46 increased significantly (P<0.05) only in the 30FAIL condition at 4 h post-exercise, whereas, 4E-BP1Thr37/46 phosphorylation was greater 24 h after exercise than at rest in both 90FAIL (237%) and 30FAIL (312%) conditions. Pax7 mRNA expression increased at 24 h post-exercise (P=0.02) regardless of condition. The mRNA expression of MyoD and myogenin were consistently elevated in the 30FAIL condition. CONCLUSIONS/SIGNIFICANCE: These results suggest that low-load high volume resistance exercise is more effective in inducing acute muscle anabolism than high-load low volume or work matched resistance exercise modes

    Spontaneous DNA damage to the nuclear genome promotes senescence,redox imbalance and aging

    Get PDF
    Accumulation of senescent cells over time contributes to aging and age-related diseases. However, what drives senescence in vivo is not clear. Here we used a genetic approach to determine if spontaneous nuclear DNA damage is sufficient to initiate senescence in mammals. Ercc1-/Δ mice with reduced expression of ERCC1-XPF endonuclease have impaired capacity to repair the nuclear genome. Ercc1-/Δ mice accumulated spontaneous, oxidative DNA damage more rapidly than wild-type (WT) mice. As a consequence, senescent cells accumulated more rapidly in Ercc1-/Δ mice compared to repair-competent animals. However, the levels of DNA damage and senescent cells in Ercc1-/Δ mice never exceeded that observed in old WT mice. Surprisingly, levels of reactive oxygen species (ROS) were increased in tissues of Ercc1-/Δ mice to an extent identical to naturally-aged WT mice. Increased enzymatic production of ROS and decreased antioxidants contributed to the elevation in oxidative stress in both Ercc1-/Δ and aged WT mice. Chronic treatment of Ercc1-/Δ mice with the mitochondrial-targeted radical scavenger XJB-5–131 attenuated oxidative DNA damage, senescence and age-related pathology. Our findings indicate that nuclear genotoxic stress arises, at least in part, due to mitochondrial-derived ROS, and this spontaneous DNA damage is sufficient to drive increased levels of ROS, cellular senescence, and the consequent age-related physiological decline

    Spontaneous DNA damage to the nuclear genome promotes senescence, T redox imbalance and aging

    Get PDF
    Accumulation of senescent cells over time contributes to aging and age-related diseases. However, what drives senescence in vivo is not clear. Here we used a genetic approach to determine if spontaneous nuclear DNA damage is sufficient to initiate senescence in mammals. Ercc1-/Δ mice with reduced expression of ERCC1-XPF endonuclease have impaired capacity to repair the nuclear genome. Ercc1-/Δ mice accumulated spontaneous, oxidative DNA damage more rapidly than wild-type (WT) mice. As a consequence, senescent cells accumulated more rapidly in Ercc1-/Δ mice compared to repair-competent animals. However, the levels of DNA damage and senescent cells in Ercc1-/Δ mice never exceeded that observed in old WT mice. Surprisingly, levels of reactive oxygen species (ROS) were increased in tissues of Ercc1-/Δ mice to an extent identical to naturally-aged WT mice. Increased enzymatic production of ROS and decreased antioxidants contributed to the elevation in oxidative stress in both Ercc1-/Δ and aged WT mice. Chronic treatment of Ercc1-/Δ mice with the mitochondrial-targeted radical scavenger XJB-5–131 attenuated oxidative DNA damage, senescence and age-related pathology. Our findings indicate that nuclear genotoxic stress arises, at least in part, due to mitochondrial-derived ROS, and this spontaneous DNA damage is sufficient to drive increased levels of ROS, cellular senescence, and the consequent age-related physiological decline

    Socioeconomic Inequality in the Prevalence of Autism Spectrum Disorder: Evidence from a U.S. Cross-Sectional Study

    Get PDF
    This study was designed to evaluate the hypothesis that the prevalence of autism spectrum disorder (ASD) among children in the United States is positively associated with socioeconomic status (SES).A cross-sectional study was implemented with data from the Autism and Developmental Disabilities Monitoring Network, a multiple source surveillance system that incorporates data from educational and health care sources to determine the number of 8-year-old children with ASD among defined populations. For the years 2002 and 2004, there were 3,680 children with ASD among a population of 557,689 8-year-old children. Area-level census SES indicators were used to compute ASD prevalence by SES tertiles of the population.Prevalence increased with increasing SES in a dose-response manner, with prevalence ratios relative to medium SES of 0.70 (95% confidence interval [CI] 0.64, 0.76) for low SES, and of 1.25 (95% CI 1.16, 1.35) for high SES, (P<0.001). Significant SES gradients were observed for children with and without a pre-existing ASD diagnosis, and in analyses stratified by gender, race/ethnicity, and surveillance data source. The SES gradient was significantly stronger in children with a pre-existing diagnosis than in those meeting criteria for ASD but with no previous record of an ASD diagnosis (p<0.001), and was not present in children with co-occurring ASD and intellectual disability.The stronger SES gradient in ASD prevalence in children with versus without a pre-existing ASD diagnosis points to potential ascertainment or diagnostic bias and to the possibility of SES disparity in access to services for children with autism. Further research is needed to confirm and understand the sources of this disparity so that policy implications can be drawn. Consideration should also be given to the possibility that there may be causal mechanisms or confounding factors associated with both high SES and vulnerability to ASD
    corecore