5,165 research outputs found

    Property A and exactness of the uniform Roe algebra

    No full text
    In this short note, prepared for the volume of conjectures to celebrate Guido Mislin's retirement, we outline the conjecture that a uniformly discrete bounded geometry metric space X has property A if and only if the uniform Roe algebra C^?(X ) is exact

    Ureteropelvic junction obstruction caused by metastatic cholangiocarcinoma

    Get PDF
    We describe the rare case of a 61-year-old female with right ureteropelvic junction (UPJ) obstruction caused by metastatic cholangiocarcinoma. Her past medical history was notable for cholangiocarcinoma treated with neoadjuvant chemoradiation and two orthotopic liver transplants six years earlier. Urology was consulted when she presented with flank pain and urinary tract infection. Diagnostic workup demonstrated right UPJ obstruction. She was managed acutely with percutaneous nephrostomy. She subsequently underwent robotic pyeloplasty and intrinsic obstruction of the UPJ was discovered. Histological examination revealed adenocarcinoma, consistent with systemic recurrence of the patient\u27s known cholangiocarcinoma

    The Black Hole Mass in Brightest Cluster Galaxy NGC 6086

    Full text link
    We present the first direct measurement of the central black hole mass, M_BH, in NGC 6086, the Brightest Cluster Galaxy (BCG) in Abell 2162. Our investigation demonstrates for the first time that stellar dynamical measurements of M_BH in BCGs are possible beyond the nearest few galaxy clusters. We observed NGC 6086 with laser guide star adaptive optics and the integral-field spectrograph (IFS) OSIRIS at the W.M. Keck Observatory, and with the seeing-limited IFS GMOS-N at Gemini Observatory North. We combined the two IFS data sets with existing major-axis kinematics, and used axisymmetric stellar orbit models to determine M_BH and the R-band stellar mass-to-light ratio, M*/L_R. We find M_BH = 3.6(+1.7)(-1.1) x 10^9 M_Sun and M*/L_R = 4.6(+0.3)(-0.7) M_Sun/L_Sun (68% confidence), from models using the most massive dark matter halo allowed within the gravitational potential of the host cluster. Models fitting only IFS data confirm M_BH ~ 3 x 10^9 M_Sun and M*/L_R ~ 4 M_Sun/L_Sun, with weak dependence on the dark matter halo structure. When data out to 19 kpc are included, the unrealistic omission of dark matter causes the best-fit black hole mass to decrease dramatically, to 0.6 x 10^9 M_Sun, and the best-fit stellar mass-to-light ratio to increase to 6.7 M_Sun/L_Sun. The latter value is at further odds with stellar population studies favoring M*/L ~ 2 M_Sun/L_Sun,R. Biases from dark matter omission could extend to dynamical models of other galaxies with central stellar cores, and new measurements of M_BH from models with dark matter could steepen the empirical scaling relationships between black holes and their host galaxies.Comment: 22 pages, 19 figures; accepted for publication in Ap

    Cascade of Complexity in Evolving Predator-Prey Dynamics

    Full text link
    We simulate an individual-based model that represents both the phenotype and genome of digital organisms with predator-prey interactions. We show how open-ended growth of complexity arises from the invariance of genetic evolution operators with respect to changes in the complexity, and that the dynamics which emerges is controlled by a non-equilibrium critical point. The mechanism is analogous to the development of the cascade in fluid turbulence.Comment: 5 pages, 3 figures; added comments on system size scaling and turbulence analogy, added error estimates of data collapse parameters. Slightly enhanced from the version which will appear in PR

    Anomalous thermal expansion in 1D transition-metal cyanides: what makes the novel trimetallic cyanide Cu1/3Ag1/3Au1/3CN behave differently?

    Get PDF
    The structural dynamics of a quasi-one-dimensional (1D) mixed-metal cyanide, Cu1/3Ag1/3Au1/3CN, with intriguing thermal properties is explored. All the current known related compounds with straight-chain structures, such as group 11 cyanides CuCN, AgCN, AuCN and bimetallic cyanides MxM’1-xCN (M, M’ = Cu, Ag, Au), exhibit 1D negative thermal expansion (NTE) along the chains and positive thermal expansion (PTE) perpendicular to them. Cu1/3Ag1/3Au1/3CN exhibits similar PTE perpendicular to the chains, however PTE, rather than NTE, is also observed along the chains. In order to understand the origin of this unexpected behavior, inelastic neutron scattering (INS) measurements were carried out, underpinned by lattice-dynamical density-functional-theory (DFT) calculations. Synchrotron-based pair-distribution-function (PDF) analysis and 13C solid-state nuclear-magnetic-resonance (SSNMR) measurements were also performed to build an input structural model for the lattice dynamical study. The results indicate that transverse motions of the metal ions are responsible for the PTE perpendicular to the chains, as is the case for the related group 11 cyanides. However NTE along the chain due to the tension effect of these transverse motions is not observed. As there are different metal-to-cyanide bond lengths in Cu1/3Ag1/3Au1/3CN, the metals in neighboring chains cannot all be truly co-planar in a straight-chain model. For this system, DFT-based phonon calculations predict small PTE along the chain due to low-energy chain-slipping modes induced by a bond-rotation effect on the weak metallophilic bonds. However the observed PTE is greater than that predicted with the straight-chain model. Small bends in the chain to accommodate truly co-planar metals provide an alternative explanation for thermal behavior. These would mitigate the tension effect induced by the transverse motions of the metals and, as temperature increases and the chains move further apart, a straightening could occur resulting in the observed PTE. This hypothesis is further supported by unusual evolution in the phonon spectra, which suggest small changes in local symmetry with temperature

    Interaction of the NO 3pπ (C 2Π) Rydberg state with RG (RG = Ne, Kr, and Xe): potential energy surfaces and spectroscopy

    Get PDF
    We present new potential energy surfaces for the interaction of NO(C 2Π) with each of Ne, Kr, and Xe. The potential energy surfaces have been calculated using second order Møller-Plesset perturbation theory, exploiting a procedure to converge the reference Hartree-Fock wavefunction for the excited states: the maximum overlap method. The bound rovibrational states obtained from the surfaces are used to simulate the electronic spectra and their appearance is in good agreement with available (2+1) REMPI spectra. We discuss the assignment and appearance of these spectra, comparing to that of NO-Ar

    Assessing the Main Barriers to Student Success in the Caribbean

    Get PDF
    Education plays an important role in facilitating economic development, social mobility, and individual empowerment. In the Caribbean, providing high-quality education for all students remains a top priority for policymakers and educators. However, despite efforts to improve educational outcomes at the secondary level, students continue to face numerous challenges that impact their academic performance and hinder their ability to reach their full potential

    Apolipoprotein L1 gene variants associate with prevalent kidney but not prevalent cardiovascular disease in the Systolic Blood Pressure Intervention Trial.

    Get PDF
    Apolipoprotein L1 gene (APOL1) G1 and G2 coding variants are strongly associated with chronic kidney disease (CKD) in African Americans (AAs). Here APOL1 association was tested with baseline estimated glomerular filtration rate (eGFR), urine albumin:creatinine ratio (UACR), and prevalent cardiovascular disease (CVD) in 2571 AAs from the Systolic Blood Pressure Intervention Trial (SPRINT), a trial assessing effects of systolic blood pressure reduction on renal and CVD outcomes. Logistic regression models that adjusted for potentially important confounders tested for association between APOL1 risk variants and baseline clinical CVD (myocardial infarction, coronary, or carotid artery revascularization) and CKD (eGFR under 60 ml/min per 1.73 m(2) and/or UACR over 30 mg/g). AA SPRINT participants were 45.3% female with a mean (median) age of 64.3 (63) years, mean arterial pressure 100.7 (100) mm Hg, eGFR 76.3 (77.1) ml/min per 1.73 m(2), and UACR 49.9 (9.2) mg/g, and 8.2% had clinical CVD. APOL1 (recessive inheritance) was positively associated with CKD (odds ratio 1.37, 95% confidence interval 1.08-1.73) and log UACR estimated slope (β) 0.33) and negatively associated with eGFR (β -3.58), all significant. APOL1 risk variants were not significantly associated with prevalent CVD (1.02, 0.82-1.27). Thus, SPRINT data show that APOL1 risk variants are associated with mild CKD but not with prevalent CVD in AAs with a UACR under 1000 mg/g

    Meniscal transplantation and its effect on osteoarthritis risk : an abridged protocol for the MeTEOR study : a comprehensive cohortstudy incorporating a pilot randomised controlled trial

    Get PDF
    Objectives: Subtotal or total meniscectomy in the medial or lateral compartment of the knee results in a high risk of future osteoarthritis. Meniscal allograft transplantation has been performed for over thirty years with the scientifically plausible hypothesis that it functions in a similar way to a native meniscus. It is thought that a meniscal allograft transplant has a chondroprotective effect, reducing symptoms and the long-term risk of osteoarthritis. However, this hypothesis has never been tested in a high-quality study on human participants. This study aims to address this shortfall by performing a pilot randomised controlled trial within the context of a comprehensive cohort study design. Methods: Patients will be randomised to receive either meniscal transplant or a non-operative, personalised knee therapy program. MRIs will be performed every four months for one year. The primary endpoint is the mean change in cartilage volume in the weight-bearing area of the knee at one year post intervention. Secondary outcome measures include the mean change in cartilage thickness, T2 maps, patient-reported outcome measures, health economics assessment and complications. Results: This study is expected to report its findings in 2016

    Modeling of the hemodynamic responses in block design fMRI studies

    Get PDF
    The hemodynarnic response function (HRF) describes the local response of brain vasculature to functional activation. Accurate HRF modeling enables the investigation of cerebral blood flow regulation and improves our ability to interpret fMRI results. Block designs have been used extensively as fMRI paradigms because detection power is maximized; however, block designs are not optimal for HRF parameter estimation. Here we assessed the utility of block design fMRI data for HRF modeling. The trueness (relative deviation), precision (relative uncertainty), and identifiability (goodness-of-fit) of different HRF models were examined and test-retest reproducibility of HRF parameter estimates was assessed using computer simulations and fMRI data from 82 healthy young adult twins acquired on two occasions 3 to 4 months apart. The effects of systematically varying attributes of the block design paradigm were also examined. In our comparison of five HRF models, the model comprising the sum of two gamma functions with six free parameters had greatest parameter accuracy and identifiability. Hemodynamic response function height and time to peak were highly reproducible between studies and width was moderately reproducible but the reproducibility of onset time was low. This study established the feasibility and test-retest reliability of estimating HRF parameters using data from block design fMRI studies
    corecore