836 research outputs found

    Soil microbial populations in deep floodplain soils are adapted to infrequent but regular carbon substrate addition

    Get PDF
    This is the final version of the article. Available from Elsevier via the DOI in this record.Floodplain soils provide an important link in the land-ocean aquatic continuum. Understanding microbial activity in these soils, which can be many metres deep, is a key component in our understanding of the role of floodplains in the carbon (C) cycle. We sampled the mineral soil profile to 3 m depth from two floodplain sites under long-term pasture adjacent to the river Culm in SW England, UK. Soil chemistry (C, nitrogen (N), phosphorus (P), soil microbial biomass (SMB), moisture content) and soil solution (pH, dissolved organic C (DOC) and N, nitrate, ammonium, water extractable P) were analysed over the 3 m depth in 6 increments: 0.0–0.2, 0.2–0.7, 1.0–1.5, 1.5–2.0, 2.0–2.5, and 2.5–3.0 m. 14 C-glucose was added to the soil and the evolution of 14 CO 2 measured during a 29 d incubation. From soil properties and 14 C-glucose mineralisation, three depth groups emerged, with distinct turnover times extrapolated from initial k 1 mineralisation rate constants of 2 h (topsoil 0.0–0.2 m), 4 h (subsoil 0.2–0.7 m), and 11 h (deep subsoil 1.0–3.0 m). However, when normalised by SMB, k 1 rate constants had no significant differences across all depths. Deep subsoil had a 2 h lag to reach maximal 14 CO 2 production whereas the topsoil and subsoil (0.2–0.7 m) achieved maximum mineralisation rates immediately. SMB decreased with depth, but only to half of the surface population, with the proportion of SMB-C to total C increasing from 1% in topsoil to 15% in deep subsoil ( > 1.0 m). The relatively large SMB concentration and rapid mineralisation of 14 C-glucose suggests that DOC turnover in deep soil horizons in floodplains is limited by access to biologically available C and not the size of the microbial population.Natural Environment Research Council (NERC)Biotechnology and Biological Sciences Research Council (BBSRC

    Hydrodynamic modeling of tidal-fluvial flows in a large river estuary

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordThe transition between riverine and estuarine environments is characterised by a change from unidirectional to bidirectional flows, in a region referred to herein as the Tidally-Influenced Fluvial Zone (TIFZ). In order to improve our understanding of the hydrodynamics and morphodynamics of this zone, we present a combined field and numerical modelling study of the Columbia River Estuary (CRE), USA, tidally-influenced fluvial zone. The CRE is large measuring 40 km in length and between 5 and 10 km wide. A shallow water model (Delft3D) was applied in both 2D and 3D configurations and model sensitivity to the key process parameterizations was investigated. Our results indicate that a 2D model constrained within the estuary can sufficiently reproduce depth-averaged flow within the TIFZ of a stratified estuary. Model results highlight the interactions between tidal-, fluvial- and topographic-forcing that result in depth dependent tidal rectification, and thus zones of residual sediment transport that: i) may be flood-directed along shallow channel margins and in the lee of bars, and simultaneously ii) is ebb-directed within deeper channel thalwegs. This condition is enhanced at lower discharges, but increased fluvial discharge reduces the number and size of regions with net flood-directed sediment transport and flow. These sediment transport patterns provide a mechanism to extend the bar/island topography downstream, and generate flood-directed, ebb-directed, and symmetrical bedforms, all within the same channel. Analysis of the model data reveals flood-directed sediment transport is due to both tidal variability and mean flow. These results highlight the need to include the mean flow component (M0) when considering the long-term morphodynamic evolution in a TIFZ. Model results highlight the interactions between tidal-, fluvial- and topographic-forcing that result in depth dependent tidal rectification, and thus zones of residual sediment transport that: i) may be flood-directed along shallow channel margins and in the lee of bars, and simultaneously ii) is ebb-directed within deeper channel thalwegs. This condition is enhanced at lower discharges, but increased fluvial discharge reduces the number and size of regions with net flood-directed sediment transport and flow. These sediment transport patterns provide a mechanism to extend the bar/island topography downstream, and generate flood-directed, ebb-directed, and symmetrical bedforms, all within the same channel. Analysis of the model data reveals flood-directed sediment transport is due to both tidal variability and mean flow. These results highlight the need to include the mean flow component (M0) when considering the long-term morphodynamic evolution in a TIFZ

    The planform mobility of river channel confluences: Insights from analysis of remotely sensed imagery

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.River channel confluences are widely acknowledged as important geomorphological nodes that control the downstream routing of water and sediment, and which are locations for the preservation of thick fluvial deposits overlying a basal scour. Despite their importance, there has been little study of the stratigraphic characteristics of river junctions, or the role of confluence morphodynamics in influencing stratigraphic character and preservation potential. As a result, although it is known that confluences can migrate through time, models of confluence geomorphology and sedimentology are usually presented from the perspective that the confluence remains at a fixed location. This is problematic for a number of reasons, not least of which is the continuing debate over whether it is possible to discriminate between scour that has been generated by autocyclic processes (such as confluence scour) and that driven by allocyclic controls (such as sea-level change). This paper investigates the spatial mobility of river confluences by using the 40-year record of Landsat Imagery to elucidate the styles, rates of change and areal extent over which large river confluence scours may migrate. On the basis of these observations, a new classification of the types of confluence scour is proposed and applied to the Amazon and Ganges-Brahmaputra-Meghna (GBM) basins. This analysis demonstrates that the drivers of confluence mobility are broadly the same as those that drive channel change more generally. Thus in the GBM basin, a high sediment supply, large variability in monsoonal driven discharge and easily erodible bank materials result in a catchment where over 80% of large confluences are mobile over this 40-year window; conversely this figure is < 40% for the Amazon basin. These results highlight that: i) the potential areal extent of confluence scours is much greater than previously assumed, with the location of some confluences on the Jamuna (Brahmaputra) River migrating over a distance of 20 times the tributary channel width; ii) extensive migration in the confluence location is more common than currently assumed, and iii) confluence mobility is often tied to the lithological and hydrological characteristics of the drainage basins that determine sediment yield.This work was funded by NERC grant NE/I023228/1 to Sambrook Smith, Bull, Nicholas and Best

    The Catalytic Site Atlas 2.0: cataloging catalytic sites and residues identified in enzymes.

    Get PDF
    Understanding which are the catalytic residues in an enzyme and what function they perform is crucial to many biology studies, particularly those leading to new therapeutics and enzyme design. The original version of the Catalytic Site Atlas (CSA) (http://www.ebi.ac.uk/thornton-srv/databases/CSA) published in 2004, which catalogs the residues involved in enzyme catalysis in experimentally determined protein structures, had only 177 curated entries and employed a simplistic approach to expanding these annotations to homologous enzyme structures. Here we present a new version of the CSA (CSA 2.0), which greatly expands the number of both curated (968) and automatically annotated catalytic sites in enzyme structures, utilizing a new method for annotation transfer. The curated entries are used, along with the variation in residue type from the sequence comparison, to generate 3D templates of the catalytic sites, which in turn can be used to find catalytic sites in new structures. To ease the transfer of CSA annotations to other resources a new ontology has been developed: the Enzyme Mechanism Ontology, which has permitted the transfer of annotations to Mechanism, Annotation and Classification in Enzymes (MACiE) and UniProt Knowledge Base (UniProtKB) resources. The CSA database schema has been re-designed and both the CSA data and search capabilities are presented in a new modern web interface

    The sedimentology of river confluences

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.Channel confluences are key nodes within large river networks, and yet surprisingly little is known about their spatial and temporal evolution. Moreover, because confluences are associated with vertical scour that typically extends to several times the mean channel depth, the deposits associated with such scours should have a high preservation potential within the rock record. Paradoxically, such scours are rarely observed, and their preservation and sedimentological interpretation are poorly understood. The present study details results from a physically‐based morphodynamic model that is applied to simulate the evolution and alluvial architecture of large river junctions. Boundary conditions within the model were defined to approximate the junction of the Ganges and Jamuna rivers, Bangladesh, with the model output being supplemented by geophysical datasets collected at this junction. The numerical simulations reveal several distinct styles of sedimentary fill that are related to the morphodynamic behaviour of bars, confluence scour downstream of braid bars, bend scour and major junction scour. Comparison with existing, largely qualitative, conceptual models reveals that none of these can be applied simply, although elements of each are evident in the deposits generated by the numerical simulation and observed in the geophysical data. The characteristics of the simulated scour deposits are found to vary according to the degree of reworking caused by channel migration, a factor not considered adequately in current conceptual models of confluence sedimentology. The alluvial architecture of major junction scours is thus characterized by the prevalence of erosion surfaces in conjunction with the thickest depositional sets. Confluence scour downstream of braid bar and bend scour sites may preserve some large individual sets, but these locations are typically characterized by lower average set thickness compared to major junction scour and by a lack of large‐scale erosional surfaces. Areas of deposition not related to any of the specific scour types highlighted above record the thinnest depositional sets. This variety in the alluvial architecture of scours may go some way towards explaining the paradox of ancient junction scours, that while abundant large scours are likely in the rock record, they have been reported rarely. The present results outline the likely range of confluence sedimentology and will serve as a new tool for recognizing and interpreting these deposits in the ancient fluvial record.This work was funded by a UK Natural Environment Research Council award to Sambrook Smith (NE/I023228/1), Bull (NE/I023864/1) and Nicholas (NE/I023120/1)

    A Tablet-based Virtual Environment for Neurosurgery Training

    Get PDF
    Published in Presence: Teleoperators and Virtual Environments, Spring 2015No. 2, Pages 155-162 Posted Online October 15, 2015. doi:10.1162/PRES_a_00224The requirement for training surgical procedures without exposing the patient to additional risk is well accepted and is part of a national drive in the UK and internationally. Computer-based simulations are important in this context, including neurosurgical resident training. The objective of this study is to evaluate the effectiveness of a custom built virtual environment in assisting training of a ventriculostomy procedure. The training tool (called VCath) has been developed as an app for a tablet platform to provide easy access and availability to trainees. The study was conducted at the first boot camp organized for all year one trainees in neurosurgery in the UK. The attendees were randomly distributed between the VCath training group and the Control group. Efficacy of performing ventriculostomy for both groups was assessed at the beginning and end of the study using a simulated insertion task. Statistically significant changes in performance of selecting the burr hole entry point, the trajectory length and duration metrics for the VCath group, together with a good indicator of improved normalized jerk (representing the speed and smoothness of arm motion), all suggest that there has been a higher level cognitive benefit to using VCath. The app is successful as it is focused on the cognitive task of ventriculostomy, encouraging the trainee to rehearse the entry point and use anatomical landmarks to create a trajectory to the target. In straight-line trajectory procedures such as ventriculostomy, cognitive task based education is a useful adjunct to traditional methods and may reduce the learning curve and ultimately improve patient safety

    Quantification of bedform dynamics and bedload sediment flux in sandy braided rivers from airborne and satellite imagery

    Get PDF
     This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record Images from specially‐commissioned aeroplane sorties (manned aerial vehicle, MAV), repeat unmanned aerial vehicles (UAVs) surveys, and Planet CubeSat satellites are used to quantify dune and bar dynamics in the sandy braided South Saskatchewan River, Canada. Structure‐from‐Motion (SfM) techniques and application of a depth‐brightness model are used to produce a series of Digital Surface Models (DSMs) at low and near‐bankfull flows. A number of technical and image processing challenges are described that arise from the application of SfM in dry and submerged environments. A model for best practice is outlined and analysis suggests a depth‐brightness model approach can represent the different scales of bedforms present in sandy braided rivers with low‐turbidity and shallow (< 2 m deep) water. The aerial imagery is used to quantify the spatial distribution of unit bar and dune migration rate in an 18 km reach and three ~1 km long reaches respectively. Dune and unit bar migration rates are highly variable in response to local variations in planform morphology. Sediment transport rates for dunes and unit bars, obtained by integrating migration rates (from UAV) with the volume of sediment moved (from DSMs using MAV imagery) show near‐equivalence in sediment flux. Hence, reach‐based sediment transport rate estimates can be derived from unit bar data alone. Moreover, it is shown that reasonable estimates of sediment transport rate can be made using just unit bar migration rates as measured from 2D imagery, including from satellite images, so long as informed assumptions are made regarding average bar shape and height. With recent availability of frequent, repeat satellite imagery, and the ease of undertaking repeat MAV and UAV surveys, for the first time, it may be possible to provide global estimates of bedload sediment flux for large or inaccessible low‐turbidity rivers that currently have sparse information on bedload sediment transport rates.Natural Environment Research Council (NERC

    Imaging Atherosclerosis.

    Get PDF
    Advances in atherosclerosis imaging technology and research have provided a range of diagnostic tools to characterize high-risk plaque in vivo; however, these important vascular imaging methods additionally promise great scientific and translational applications beyond this quest. When combined with conventional anatomic- and hemodynamic-based assessments of disease severity, cross-sectional multimodal imaging incorporating molecular probes and other novel noninvasive techniques can add detailed interrogation of plaque composition, activity, and overall disease burden. In the catheterization laboratory, intravascular imaging provides unparalleled access to the world beneath the plaque surface, allowing tissue characterization and measurement of cap thickness with micrometer spatial resolution. Atherosclerosis imaging captures key data that reveal snapshots into underlying biology, which can test our understanding of fundamental research questions and shape our approach toward patient management. Imaging can also be used to quantify response to therapeutic interventions and ultimately help predict cardiovascular risk. Although there are undeniable barriers to clinical translation, many of these hold-ups might soon be surpassed by rapidly evolving innovations to improve image acquisition, coregistration, motion correction, and reduce radiation exposure. This article provides a comprehensive review of current and experimental atherosclerosis imaging methods and their uses in research and potential for translation to the clinic.J.M.T. is supported by a Wellcome Trust research training fellowship (104492/Z/14/Z). M.D is supported by the British Heart Foundation (FS/14/78/31020). N.R.E. is supported by a research training fellowship from the Dunhill Medical Trust (RTF44/0114). A.J.B. is supported by the British Heart Foundation. J.H.F.R. is part-supported by the HEFCE, the NIHR Cambridge Biomedical Research Centre, the British Heart Foundation, and the Wellcome Trust.This is the final version of the article. It first appeared from the American Heart Association via http://dx.doi.org/10.1161/CIRCRESAHA.115.30624
    corecore