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Abstract— The design of the information-processing architec-
ture used to develop an intelligent robot plays a significant role
in the behaviour of the final system. In this paper we discuss
the possibilities for benchmarking the influence of architecture
designs on intelligent robots. We separate this problem into
two sub-problems: benchmarking the architecture design and
benchmarking the implementation of the design. For each of
these sub-problems we list some design- and run-time properties
that could be investigated. To further demonstrate these ideas we
present some early efforts to benchmark the run-time properties
of a previously developed architecture schema.

I. INTRODUCTION

Many current robotic projects are focused on the task of
building intelligent or cognitive robots. In such projects the
majority of the effort is directed towards developing com-
ponent technologies such as parsers, planners, map building
systems and object recognition techniques. All these tech-
nologies are of course vital for any such project, but with
the overwhelming effort directed at the components, the study
of how these components are integrated is often overlooked.
We argue that understanding the information-processing archi-
tecture used to integrate components into a single intelligent
system is an important, and oft-overlooked, element of the
science of designing and building intelligent robots (and other
systems). This paper describes, at a high level, our motivation
for wanting to understand architectures, and some proposals
for experimental methodologies and metrics for evaluating the
influence of an architecture on an intelligent system.

II. BACKGROUND

A common approach to building an intelligent system to
perform a particular task follows this pattern: analyse the
problem to determine the sub-problems that need to be solved,
develop new (or obtain existing) technologies to solve these
sub-problems, put all the technologies together in a single
system, then demonstrate the system performing the original
task. This “look ma no hands” approach to intelligent system
design has a number of problems (some of which this work-
shop is trying to address), but we will focus on the “put all
the technologies together” step. If the number of component

technologies are small, and the interactions between them are
strictly limited, then arbitrarily connecting components may
suffice. However, once a certain level of sophistication has
been reached (we would argue that once you integrate two
or more sensory modalities in a robot, or would like your
system to be generally extensible, you have reached this level),
then this approach lacks the foresight necessary to develop
a good system design. Instead, the initial problem analysis
should cover the requirements for the system’s information-
processing architecture design (i.e. the integrating parts) in
addition to the component technologies.

Given that there is a huge space of possible architecture
designs for intelligent systems (cf. [1, 2]) it is important both
that we (as scientists concerned with designing and building
such systems) understand this design space, and that we are
able to evaluate the influence of the architectures we use on the
systems we build. We have argued the former point elsewhere
(e.g. [3, 4]), and will focus on the latter point in this paper.

III. THE PROBLEM

Informally put, the problem is as follows: imagine that a
number of teams of researchers are all asked to build an
intelligent system to solve a clearly defined problem (e.g.
attending a conference, being a tour guide in a museum or
crossing a desert). All the teams are given the same software
libraries that provide solutions to the all the problems the
target system will need to solve. They are also all given the
same hardware (sensors, effectors and processing power) to
run the software on. The teams each produce a system to
solve the initial problem, and each system displays different
behaviour to the others (some may display large differences,
some small). The question is: what are the differences between
these systems?

There are many different ways to answer this question. One
way may focus on the engineering skills of the teams, one
on the communication middleware used to wrap the libraries
into components, one on the division of the task into sub-tasks
and modules etc. To address this, we will assume that each
team took the following approach: either adopted an existing



information-processing architecture design (e.g. 3T [5], Soar
[6] or the Subsumption Architecture [7]) or invented their
own; built the architecture infrastructure in software (or used
the software provided by the original architecture designers);
and then used this infrastructure to assemble the provided
software libraries into the finished system. In other words they
used an architecture toolkit to build their system. For ease
of discussion we will assume that an architecture toolkit is
the software realisation of an abstract architecture design. We
assume that such software allows the teams in the example to
build robots that are direct instantiations of the abstract design
(which is almost never the case in real applications).

By making the assumption of an architecture toolkit we
can separate out two separate aspects of a toolkit which we
might want to benchmark or otherwise study in terms on
their influence on the design and implementation of intelligent
robots. These aspects are the abstract architecture design that
the toolkit is based on (i.e. the design of the toolkit), and
the software (middleware) which the system engineers have
to use to build systems with (i.e. the implementation of the
toolkit). We will address these separately in the following
sections. However, before that it is worth stressing that all
evaluation and benchmarking of architecture designs must be
done in relation to a particular problem or task. Architecture
designs (and implementations of these designs) are created
to satisfy the requirements of a particular niche [8]. The use
of a particular design (e.g. The Subsumption Architecture)
may demonstrate completely difference performance from one
task (e.g. rubbish collection) to another (e.g. chess play-
ing). Therefore please consider all evaluation procedures and
metrics mentioned subsequently to be task dependent. Given
this, they will only be meaningful if we compare different
architectures on the same task using the same procedures
and metrics [4]. A further qualification is that the following
sections and suggestions are almost certainly incomplete. We
present them here purely as a starting point for the discussion
on benchmarking for intelligent systems.

IV. EVALUATING ARCHITECTURE DESIGNS

Using the toolkit metaphor we can separate our discussion
of architecture design evaluation into two sections: the influ-
ence the abstract architecture design has on the design & build-
time requirements of an intelligent system, and the influence
the design has on the run-time requirements of an intelligent
system.

A. Design & Build Influences

Although the influence of the architecture design can have a
massive impact on the overall design & build of an intelligent
system, it is very hard to benchmark this impact. To measure
the effects of an architecture design on the design & build of
system quantitatively you would have to look at the person-
months spent on particular aspects of the task. However, such
measurements would not be particularly informative on their
own (and would be heavily influenced by the individuals in

question), without a qualitative description of how the architec-
ture influenced different parts of the problem solving activities
involved in the system design & build. Such qualitative factors
could include:

• What, if any, representations does the architecture design
enforce? How do these relate to the requirements of the
tasks? For example, is a single unified representation
required (and if so, how is translation to and from this
handled), or can multiple representations be used?

• What, if any, system decomposition does the architecture
design enforce? Does it only allow behavioural or func-
tionality decompositions, or are arbitrary decompositions
allowed?

• What functionality does the design provide? For example,
does it include learning mechanisms or action arbitration
mechanisms? How do these relate to the requirements of
the task?

• Does the architecture design provide a useful tool for
system design? For example is it too restrictive to allow
particular designs to be used, or is it too general so that it
does not constrain the space of possible designs enough
to be useful?

• How easy is it to add new functionality to the system?
Does the architecture mean that additions require a com-
plete restructuring?

B. Run-time Influences

Once an architecture toolkit has been used to build a system,
we can then investigate the effects the architecture design
has on the system at run-time. Run-time influences are more
amenable to quantitative benchmarking, given appropriate
metrics that could be extracted from a running system. That
said it could prove hard to separate the run-time influences
of architecture design and the run-time influences of the
architecture implementation. Some properties that could be
measured include:

• How often does the system succeed, fail, make a small
mistake etc.?

• How quickly can the system respond to task-relevant
changes in its environment?

• What is the overhead of moving information from one
component to another in the system (in terms of filter-
ing out relevant information, not purely communications
load)? (see Section VIII)

• How well does the architecture scale up to bigger prob-
lems or scale out to problems requiring additional func-
tionality? I.e. how does the performance of the architec-
ture change as the requirements of the task change.

V. EVALUATING ARCHITECTURE MIDDLEWARE

Given a software toolkit that represents an architecture
design you can again benchmark, evaluate or investigate it
in terms of design & build time influences and run-time
influences. As we are now referring to the software aspects of
architecture toolkits, we expect that these factors are closely
related to the properties you would wish to benchmark for



(non architectural) middleware such as YARP [9] or MARIE
[10].

VI. DESIGN-TIME INFLUENCES

As discussed in Section IV-A, design-time influences are
very hard to benchmark or evaluate directly. However, there
are questions that should be asked of any software tool used
for robotics (or otherwise).

• How well does the toolkit support code reuse?
• How flexible is the toolkit with respect to programming

style? Does it allow programmers to solve problems in
the way they want, or are they overly constrained by the
architecture design.

• What support for debugging does the toolkit provide? Can
intermediate results of processing be inspected?

• How well does it integrate with existing software? E.g.
does it provide interfaces for using Player/Stage [11], or
for accessing standard hardware devices?

• What are the real-time properties of the toolkit? Does it
provide performance guarantees?

• What are programming languages does the toolkit sup-
port?

VII. RUN-TIME INFLUENCES

When looking to benchmark the software aspects of an
architecture toolkit at run-time, we are mostly interested in the
aspects of the performance of the system that are independent
of the actual architecture design. These include:

• What is the (CPU, time, memory) overhead of using the
toolkit?

• How robust is the system with respect to component or
communication failures?

• How quickly can data be exchanged between two or more
components?

VIII. AN EXAMPLE OF COMPARING ARCHITECTURES

In previous work we suggested a method for benchmarking
architectures [4]. This method is relatively close to the thought
experiment presented in Section III. Following this method
we took a robotic architecture toolkit, the CoSy Architecture
Schema Toolkit (CAST) [12], and developed a system with
it. We then altered the architecture in principled ways whilst
making the minimum changes to component code that we
could. Instantiations of these altered architectures were then
run on the same problem, allowing us measure some of
their run-time characteristics. These measurements were then
compared to allow us to benchmark each architecture on this
problem. For this study we focused on a small selection of
the run-time properties of the architectures. These properties
relate to the third bullet point in Section IV-B: the overhead
of moving information from one component to another in the
system.

A. The Experimental System

The system which we have used for benchmarking is
derived from an intelligent robot cable of object manipulation
and human-robot interaction [13]. It is based on the CoSy
Architecture Schema (CAS). This schema is pictured in Figure
1. It has a number of features relevant to developing integrated
systems, but here we will focus on the approach it takes to
passing information between components 1.

CAS is based around the idea of a collection of loosely
coupled subarchitectures, where a subarchitecture can be
considered as a subsystem of the whole architecture. As
shown in Figure 1(a), each subarchitecture contains a number
of (concurrently active) processing components which share
information via a working memory. When information is
operated on (added, overwritten or deleted) in a CAS working
memory a change event is generated. This event structure
contains information on the operation performed, the type (i.e.
class name) of the information, the component which made
the change, and the location of the information in the system.
Components use this change event data to decide whether to
perform some processing task with the changed information.
To restrict the change events that are received, each component
is able to filter the event stream based on change event
contents. Components typically subscribe to relevant change
information by registering callbacks on combinations of the
fields in the change event. For example, a vision component
may subscribe to additions of regions of interests. This filter
would refer to the change event’s operation type (addition) and
data type (region of interest).

Subarchitecture groupings influence the flow of change
events, and thus the flow of information between components.
Within a subarchitecture, components are sent all the of
change events generated by operations on that subarchitec-
ture’s working memory. They then use their filters to select the
relevant events from this stream. Change events that describe
operations on other working memories (i.e. those outside of
the subarchitecture) are first checked against the union of all
of the filters registered by components in a subarchitecture. If
an event passes these filters then it is forwarded to all of the
subarchitecture’s components via the same mechanism used
for local changes. This reuse of the existing filter mechanism
adds redundancy to the change propagation mechanisms, but
reduces the complexity of the system.

When a component reads information from, or writes
information to, a working memory, or a change event is
broadcast, a communication event occurs. A communication
event abstracts away from the underlying communications
infrastructure, hiding whether the information is being moved
in memory, over a network or translated between programming
languages. Within subarchitectures any operation requires a
single communication event. When communication happens
between two subarchitectures an additional communication
event is required due to the separation (this is equivalent to

1For a more complete description of the schema, see our previous work
[14, 13, 12].



(a) The CAS subarchitecture design schema. All information
passes via the working memory.

(b) A CAS architecture based on three subarchitectures. Cross-
subarchitecture communication occurs via connections between
working memories.

Fig. 1. Two views of the CoSy Architecture Schema.

the information passing over one of the dark lines in Figure
1(b)).

Change and communication events are implemented as part
of the CoSy Architecture Schema Toolkit (CAST) which
realises the CAS schema in an open source, multi-language
software framework [12]. In CAST the change event sys-
tem is implemented as a callback mechanism modelled on
event driven programming. The communication events are
implemented as procedure calls or remote procedure calls
depending on the languages and distribution methods used in
the instantiation.

Using CAST we have built an integrated intelligent robot
which features subarchitectures for vision, qualitative spatial
reasoning (QSR), communication, continual planning, binding,
manipulation and control [13, 15]. To provide a simpler system
useful for exploring the design space of information sharing
mechanisms, we reduced this system to a smaller number of
subarchitectures: vision, binding, and QSR. This reduction
was chosen because it provides a simpler system which
still integrates two modalities with distinct representations
(quantitative vision and qualitative spatial reasoning). For the
experimental runs we replaced some of the components in the
visual subarchitecture with simulated components. These not
only simulated the results of visual processing, but also the
interactions of the components via shared working memories
(the important aspect of this study). This allowed us to fully
automate interactions with the system in order to perform a
large number of experimental runs. Aside from these alter-
ations, the remaining components were taken directly from
our original robotic system.

When presented with an object after a change to the visual
scene, the system first determines its 3D position and then
extracts some visual attributes. This information is abstracted
into the binding subarchitecture where it become available in
a simplified form to the rest of the system. The presence of
object information in the binding subarchitecture triggers the
QSR subarchitecture which computes spatial relations between
the new object and any other known objects. This relational
information is transmitted back to the binding subarchitecture
where the relations are introduced between the existing object
representations.

B. Methodology

We can use the shared memory-based design of CAS to
benchmark the effects of varying information sharing patterns
between components in our experimental system. We do this
by altering the ratio of components to subarchitectures.

We start with an n-m design where n components are
divided between m subarchitectures, where n > m > 1. This
is our original system described above, in which components
are assigned to subarchitectures based on functionality (vi-
sion, binding or QSR). We then reconfigure this system to
generate architectures at two extremes of the design space for
information sharing models. At one extreme we have an n-
1 design in which all n components from the original system
are in the same subarchitecture. At the other extreme of design
space we have an n-n design in which every component is in
a subarchitecture of its own. Each of these designs can be
considered a schema specialisation of the CAS schema from
which a full instantiation can be made.



These various designs are intended to approximate, within
the constraints of CAS, various possible designs used by
existing systems. The n-1 design represents systems with a
single shared data store to which all components have the same
access. The n-m design represents systems in which a designer
has imposed some modularity which limits how data is shared
between components. The n-n design represents a system in
which a no data is shared, but is instead transmitted directly
between components. In the first two designs a component
has do to extra work to determine what information it requires
from the available shared information. In the latter two designs
a component must do extra work to obtain information that is
not immediately available to it (i.e. information that is not in
it’s subarchitecture’s working memory).

In order to isolate the effects of the architectural alterations
from the other run-time behaviours of the resulting systems,
it is important that these architectural differences are the only
differences that exist between the final CAS instantiations. It is
critical that the systems are compared on the same task using
the same components. CAST was designed to support this kind
of experimentation: it allows the structure of instantiations
to be changed considerably, with few, if any, changes to
component code. This has allowed us to take the original
implementation described above and create the n-1, n-m, and
n-n instantiations without changing component code. This
means that we can satisfy our original aim of comparing near-
identical systems on the same tasks, with the only variations
between them being architectural ones.

To measure the effects of the architecture variations, we
require metrics that can be used to highlight these effects. We
previously presented a list of possible metrics that could be
recorded in an implemented CAS system to demonstrate the
trade-offs in design space [4]. Ultimately we are interested
in measuring how changes to the way information is shared
impacts on the external behaviour of the systems, e.g. how
often it successfully completes a task. However, given the
limited functionality of our experimental system, these kind
of behaviour metrics are relatively uninformative. Instead we
have chosen to focus on lower-level properties of the system.
We have compared the systems on:

1) variations in the number of filtering operations needed
to obtain the change events necessary to get information
to components as required by the task.

2) variations in the number of communication events
required to move information around the system.

As discussed previously, communication and change events
underlie the behaviour of almost all of the processing per-
formed by a system. Therefore changes in these metrics
demonstrate how moving through the space of information
sharing models supported by CAS influences the information
processing profile of implemented systems.

We studied the three different designs in two configurations:
one with vision and binding subarchitectures, and the second
with these plus the addition of the QSR subarchitecture. This
resulted in six final instantiations which we tested on three
different simulated scenes: scenes containing one object, two

Fig. 2. Average number of relevant change events received per component.

objects and three objects. Each instantiation was run twenty
times on each scene to account for variations unrelated to the
system’s design and implementation.

C. Results

The results for the filtering metric are based around the
notion of a relevant event. A relevant event is a change
event that a component is filtering for (i.e. an event that it
has subscribed to). Figure 2 demonstrates the percentage of
relevant events received per component in each instantiation.
100% means that a component only receives change events it
is listening for. A lower percentage means that the connectivity
of the system allows more than the relevant change events to
get the component, which then has to filter out the relevant
ones. This is perfectly natural in a shared memory system. The
results demonstrate that a component in an n-1 instantiation
receives the lowest percentage of relevant events. This is
because within a subarchitecture, all changes are broadcast
to all components, requiring each component to do a lot of
filtering work. A component in an n-n instantiation receives
the greatest percentage of relevant changes. This is because
each component is shielded by a subarchitecture working
memory that only allows change events that are relevant to
the attached components to pass. In the n-n case because only
a single component is in each subarchitecture this number is
predictably high2. This figure demonstrates the benefits of a
directly connected instantiation: components only receive the
information they need.

However, this increase in the percentage of relevant changes
received comes at a cost. If we factor in the filtering operations
being performed at a subarchitecture level (which could be
considered as “routing” operations), we can produce a figure
demonstrating the total number of filtering operations (i.e.
both those at a subarchitecture and a component level) per
relevant change received. This is presented in Figure 3. This

2The events required by the manager component in each subarchitecture
mean the relevant percentage for the n-n instantiations is not 100%.



Fig. 3. Average filtering effort per relevant change event received.

Fig. 4. Average filtering effort per relevant event compared to scene
complexity.

shows a striking similarity between the results for the n-
1 and n-n instantiations, both of which require a larger
number of filtering operations per relevant change than the
n-m instantiations. In the n-m systems, the arrangement of
components into functionally themed subarchitectures results
in both smaller numbers of change events being broadcast
within subarchitectures (because there are fewer components
in each one), and a smaller number of change events being
broadcast outside of subarchitectures (because the functional
grouping means that some changes are only required within
particular subarchitectures). These facts mean that an indi-
vidual component in an n-m instantiation receives fewer
irrelevant change events that must be rejected by its filter.
Conversely a component in the other instantiations must filter
relevant changes from a stream of changes containing all of
the change events in the system. In the n-1 instantiations
this is because all of these changes are broadcast within a
subarchitecture. In the n-n instantiations this is because all of
these changes are broadcast between subarchitectures. Figure 4
shows that these results are robust against changes in the

Fig. 5. Average total communication events per instantiation run.

Fig. 6. Average total communication events per instantiation run compared
to scene complexity.

number of objects in a scene. Also, the nature of the results
did not change between the systems with vision and binding
components, and those with the additional QSR components.

Figure 5 demonstrates the average number of communica-
tion events per system run across the various scenes and con-
figurations for the three different connectivity instantiations.
This shows that an n-n instantiation requires approximately
4000 more communication events on average to perform
the same task as the n-1 instantiation, which itself requires
approximately 2000 more communication events than the n-
m instantiation. Figure 6 demonstrates that this result is robust
in the face of changes to the number of objects in a scene.
The nature of the results also did not change between the
systems with vision and binding components, and those with
the additional QSR components.

This result is due to two properties of the systems. In the
n-n system, every interaction between a component and a
working memory (whether it’s an operation on information or
the propagation of a change event) requires an additional com-
munication event. This is because all components are separated



by subarchitectures as well as working memories. In addition
to this, the number of change events propagated through the
systems greatly effect the amount of communication events
that occur. In the n-n and n-1 instantiations, the fact that they
effectively broadcast all change events throughout the system
contributes significantly to the communication overhead of the
system.

IX. CONCLUSIONS

From these results we can conclude that a functionally-
decomposed n-m CAS instantiation occupies a “sweet spot”
in architectural design space with reference to filtering and
communication costs. This sweet spot occurs because having
too much information shared between components in a system
(the n-1 extreme) means that all components incur an overhead
associated with filtering out relevant information from the
irrelevant information. At the other extreme, when information
is not shared by default (the n-n extreme) there are extra
communication costs due to duplicated transmissions between
pairs of components, and (in CAS-derived systems at least) the
“routing” overhead of transmitting information to the correct
components (i.e. the filtering performed by working memories
rather than components).

In this simple example the existence of such a sweet spot,
subject to well defined assumptions, could be established
mathematically without doing any of these experiments. How-
ever, we have shown the possibility of running experiments to
test such mathematical derivations, and also to deal with cases
where no obvious mathematical analysis is available because
of the particular features of an implementation. This exper-
imental work also supports our argument that information-
processing architectures for intelligent systems can and should
be benchmarked. It is our hope that further work along these
lines will provide system designers with a body of knowledge
about the choices and trade-offs available in architectural
design space, allowing them to build systems that satisfy their
requirements in an informed and principled manner.
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