248 research outputs found

    Dust cloud formation in stellar environments. II. Two-dimensional models for structure formation around AGB stars

    Get PDF
    This paper reports on computational evidence for the formation of cloud-like dust structures around C-rich AGB stars. This spatio-temporal structure formation process is caused by a radiative/thermal instability of dust forming gases as identified by Woitke et al.(2000). Our 2D (axisymmetric) models combine a time-dependent description of the dust formation process according to Gail & Sedlmayr (1988) with detailed, frequency-dependent continuum radiative transfer by means of a Monte Carlo method (Niccolini et al.2003) in an otherwise static medium (v=0). These models show that the formation of dust behind already condensed regions, which shield the stellar radiation field, is strongly favoured. In the shadow of these clouds, the temperature decreases by several hundred Kelvin which triggers the subsequent formation of dust and ensures its thermal stability. Considering an initially dust-free gas with small density inhomogeneities, we find that finger-like dust structures develop which are cooler than the surroundings and point towards the centre of the radiant emission, similar to the cometary knots observed in planetary nebulae and star formation regions. Compared to a spherical symmetric reference model, the clumpy dust distribution has little effect on the spectral energy distribution, but dominates the optical appearance in near IR monochromatic images.Comment: 16 pages, 8 figures, submitted to A&

    Anomaly detection mechanisms to find social events using cellular traffic data

    Get PDF
    The design of new tools to detect on-the-fly traffic anomaly without scalability problems is a key point to exploit the cellular system for monitoring social activities. To this goal, the paper proposes two methods based on the wavelet analysis of the cumulative cellular traffic. The utilisation of the wavelets permits to easily filter “normal” traffic anomalies such as the periodic trends present in the cellular traffic. The two presented approaches, denoted as Spatial Analysis (SA) and Time Analysis (TA), differ on how they consider the spatial information of the traffic data. We examine the performance of the considered algorithms using cellular traffic data acquired from one the most important Italian Mobile Network Operator in the city of Milan throughout December 2013. The results highlight the weak points of TA and some important features of SA. Both approaches overcome the performance of one reference algorithm present in literature. The strategy used in the SA emerges as the most suitable for exploiting the spatial correlation when we aim at the detection of the traffic anomaly focused on the localisation of social events

    Cholinergic imaging in dementia spectrum disorders

    Get PDF
    The multifaceted nature of the pathology of dementia spectrum disorders has complicated their management and the development of effective treatments. This is despite the fact that they are far from uncommon, with Alzheimer’s disease (AD) alone affecting 35 million people worldwide. The cholinergic system has been found to be crucially involved in cognitive function, with cholinergic dysfunction playing a pivotal role in the pathophysiology of dementia. The use of molecular imaging such as SPECT and PET for tagging targets within the cholinergic system has shown promise for elucidating key aspects of underlying pathology in dementia spectrum disorders, including AD or parkinsonian dementias. SPECT and PET studies using selective radioligands for cholinergic markers, such as [(11)C]MP4A and [(11)C]PMP PET for acetylcholinesterase (AChE), [(123)I]5IA SPECT for the α(4)ÎČ(2) nicotinic acetylcholine receptor and [(123)I]IBVM SPECT for the vesicular acetylcholine transporter, have been developed in an attempt to clarify those aspects of the diseases that remain unclear. This has led to a variety of findings, such as cortical AChE being significantly reduced in Parkinson’s disease (PD), PD with dementia (PDD) and AD, as well as correlating with certain aspects of cognitive function such as attention and working memory. Thalamic AChE is significantly reduced in progressive supranuclear palsy (PSP) and multiple system atrophy, whilst it is not affected in PD. Some of these findings have brought about suggestions for the improvement of clinical practice, such as the use of a thalamic/cortical AChE ratio to differentiate between PD and PSP, two diseases that could overlap in terms of initial clinical presentation. Here, we review the findings from molecular imaging studies that have investigated the role of the cholinergic system in dementia spectrum disorders

    Nondestructive monitoring techniques for crack detection and localization in RC elements

    Get PDF
    This paper presents the structural and damage assessment of a reinforced concrete (RC) beam subjected to a four-point bending test until yielding of reinforcing steel. The deterioration progress was monitored using different nondestructive testing (NDT) techniques. The strain was measured by distributed fiber optic sensors (FOSs), embedded prior to concrete pouring. The initiation and propagation of cracks were monitored by acoustic emission (AE) sensors attached to the surface of the material. The recorded AE activity results in good agreement with FOS strain measurements. The results of the integrated monitoring system are confirmed by visual observation of the actual crack pattern. At different loading steps, digital image correlation (DIC) analysis was also conducted

    Acoustic Emission Monitoring of the Syracuse Athena Temple: Scale Invariance in the Timing of Ruptures

    No full text
    We perform a comparative statistical analysis between the acoustic-emission time series from the ancient Greek Athena temple in Syracuse and the sequence of nearby earthquakes. We find an apparent association between acoustic-emission bursts and the earthquake occurrence. The waiting-time distributions for acoustic-emission and earthquake time series are described by a unique scaling law indicating self-similarity over a wide range of magnitude scales. This evidence suggests a correlation between the aging process of the temple and the local seismic activit

    Fast ray-tracing algorithm for circumstellar structures (FRACS) I. Algorithm description and parameter-space study for mid-IR interferometry of B[e] stars

    Get PDF
    The physical interpretation of spectro-interferometric data is strongly model-dependent. On one hand, models involving elaborate radiative transfer solvers are too time consuming in general to perform an automatic fitting procedure and derive astrophysical quantities and their related errors. On the other hand, using simple geometrical models does not give sufficient insights into the physics of the object. We propose to stand in between these two extreme approaches by using a physical but still simple parameterised model for the object under consideration. Based on this philosophy, we developed a numerical tool optimised for mid-infrared (mid-IR) interferometry, the fast ray-tracing algorithm for circumstellar structures (FRACS) which can be used as a stand-alone model, or as an aid for a more advanced physical description or even for elaborating observation strategies. FRACS is based on the ray-tracing technique without scattering, but supplemented with the use of quadtree meshes and the full symmetries of the axisymmetrical problem to significantly decrease the necessary computing time to obtain e.g. monochromatic images and visibilities. We applied FRACS in a theoretical study of the dusty circumstellar environments (CSEs) of B[e] supergiants (sgB[e]) in order to determine which information (physical parameters) can be retrieved from present mid-IR interferometry (flux and visibility). From a set of selected dusty CSE models typical of sgB[e] stars we show that together with the geometrical parameters (position angle, inclination, inner radius), the temperature structure (inner dust temperature and gradient) can be well constrained by the mid-IR data alone. Our results also indicate that the determination of the parameters characterising the CSE density structure is more challenging but, in some cases, upper limits as well as correlations on the parameters characterising the mass loss can be obtained. Good constraints for the sgB[e] central continuum emission (central star and inner gas emissions) can be obtained whenever its contribution to the total mid-IR flux is only as high as a few percents. Ray-tracing parameterised models such as FRACS are thus well adapted to prepare and/or interpret long wavelengths (from mid-IR to radio) observations at present (e.g. VLTI/MIDI) and near-future (e.g. VLTI/MATISSE, ALMA) interferometers

    Fast ray-tracing algorithm for circumstellar structures (FRACS). II. Disc parameters of the B[e] supergiant CPD-57° 2874 from VLTI/MIDI data

    Get PDF
    B[e] supergiants are luminous, massive post-main sequence stars exhibiting non-spherical winds, forbidden lines, and hot dust in a disc-like structure. The physical properties of their rich and complex circumstellar environment (CSE) are not well understood, partly because these CSE cannot be easily resolved at the large distances found for B[e] supergiants (typically \ga 1~kpc). From mid-IR spectro-interferometric observations obtained with VLTI/MIDI we seek to resolve and study the CSE of the Galactic B[e] supergiant CPD-57\degr\,2874. For a physical interpretation of the observables (visibilities and spectrum) we use our ray-tracing radiative transfer code (FRACS), which is optimised for thermal spectro-interferometric observations. Thanks to the short computing time required by FRACS (<10<10~s per monochromatic model), best-fit parameters and uncertainties for several physical quantities of CPD-57\degr\,2874 were obtained, such as inner dust radius, relative flux contribution of the central source and of the dusty CSE, dust temperature profile, and disc inclination. The analysis of VLTI/MIDI data with FRACS allowed one of the first direct determinations of physical parameters of the dusty CSE of a B[e] supergiant based on interferometric data and using a full model-fitting approach. In a larger context, the study of B[e] supergiants is important for a deeper understanding of the complex structure and evolution of hot, massive stars

    Possible Assessment of Calf Venous Pump Efficiency by Computational Fluid Dynamics Approach

    Get PDF
    Three-dimensional simulations of peripheral, deep venous flow during muscular exercise in limbs of healthy subjects and in those with venous dysfunction were carried out by a computational fluid-dynamics (CFD) approach using the STAR CCM + platform. The aim was to assess the effects of valvular incompetence on the venous calf pump efficiency. The model idealizes the lower limb circulation by a single artery, a capillary bed represented by a porous region and a single vein. The focus is on a segment of the circuit which mimics a typical deep vein at the level of the calf muscle, such as the right posterior tibial vein. Valves are idealized as ball valves, and periodic muscle contractions are given by imposing time-dependent boundary conditions to the calf segment wall. Flow measurements were performed in two cross-sections downstream and upstream of the calf pump. Model results demonstrate a reduced venous return for incompetent valves during calf exercise. Two different degrees of valvular incompetence are considered, by restricting the motion of one or both valves. Model results showed that only the proximal valve is critical, with a 30% reduction of venous return during calf exercise in case of valvular incompetence: the net flow volume ejected by the calf in central direction was 0.14 mL per working cycle, against 0.2 mL for simulated healthy limbs. This finding appeared to be consistent with a 25% reduction of the calf ejection fraction, experimentally observed in chronic venous disease limbs compared with healthy limbs

    Analysis of Acoustic Emission Activity during Progressive Failure in Heterogeneous Materials: Experimental and Numerical Investigation

    Get PDF
    This work focuses on an experimental and numerical investigation into monitoring damage in a cube-shaped concrete specimen under compression. Experimental monitoring uses acoustic emission (AE) signals acquired by two independent measurement apparatuses, and the same damage process is numerically simulated with the lattice discrete element method (LDEM). The results from the experiment and simulation are then compared in terms of their failure load, final configurations, and the evolution of global parameters based on AE signals, such as the b-value coefficient and the natural time approach. It is concluded that the results from the AE analysis present a significant sensitivity to the characteristics of the acquisition systems. However, natural time methods are more robust for determining such differences, indicating the same general tendency for all three data sets
    • 

    corecore