179 research outputs found

    Antibacterial Activity of Iranian Green and Black Tea on Streptococcus Mutans: An In Vitro Study

    Get PDF
    Objective: Dental caries is a common infectious disease.Streptococcus mutans is the prevalent decay microorganism. The anti Streptococcus mutans activity of non fermented and semi-fermented tea has been shown. The aim of this study was to determine the anti Streptococcus mutans activity of Iranian green and black tea (non fermented and fermented type).Materials and Methods: The study was experimental. The aerial parts of wild-growing Camellia sinensis were collected from Lahijan province. The methanolic extract of green and black tea were examined on Streptococcus mutans (ATCC3566). Five different concentrations (50mg/ml, 100mg/ml, 200mg/ml, 300mg/ml and 400 mg/ml) of tea extracts were tested using the well assay method. The agar dilution method recommended by the NCCLS standards (National Committee for Clinical Laboratory Standards) was used. Theminimum inhibitory concentration (MIC) was determined as the lowest concentration of extract inhibiting visible growth of the organism on the agar media plate. Minimum bactericidal concentration (MBC) was detected from MIC.Results: The Iranian green and black tea had an antibacterial effect on 100 to 400 mg/ml concentrations. The minimum inhibitory concentration of green and black tea was 150 and 50 mg/ml, respectively. The mean diameter of inhibition zone were 9.5 mm and 10.9 mm for methanolic extract of green and black tea, respectively.Conclusion: Both Iranian non fermented (green tea) and fermented (black tea) have anti Streptococcus mutans activity in vitro. The anti Streptococcus mutans activity of black tea appears on a lower concentration than green tea

    MICA: a multi-omics method to predict gene regulatory networks in early human embryos

    Get PDF
    Recent advances in single-cell omics have transformed characterisation of cell types in challenging-to-study biological contexts. In contexts with limited single-cell samples, such as the early human embryo inference of transcription factor-gene regulatory network (GRN) interactions is especially difficult. Here, we assessed application of different linear or non-linear GRN predictions to single-cell simulated and human embryo transcriptome datasets. We also compared how expression normalisation impacts on GRN predictions, finding that transcripts per million reads outperformed alternative methods. GRN inferences were more reproducible using a non-linear method based on mutual information (MI) applied to single-cell transcriptome datasets refined with chromatin accessibility (CA) (called MICA), compared with alternative network prediction methods tested. MICA captures complex non-monotonic dependencies and feedback loops. Using MICA, we generated the first GRN inferences in early human development. MICA predicted co-localisation of the AP-1 transcription factor subunit proto-oncogene JUND and the TFAP2C transcription factor AP-2γ in early human embryos. Overall, our comparative analysis of GRN prediction methods defines a pipeline that can be applied to single-cell multi-omics datasets in especially challenging contexts to infer interactions between transcription factor expression and target gene regulation

    The BCL-2 pathway preserves mammalian genome integrity by eliminating recombination-defective oocytes

    Get PDF
    DNA double-strand breaks (DSBs) are toxic to mammalian cells. However, during meiosis, more than 200 DSBs are generated deliberately, to ensure reciprocal recombination and orderly segregation of homologous chromosomes. If left unrepaired, meiotic DSBs can cause aneuploidy in gametes and compromise viability in offspring. Oocytes in which DSBs persist are therefore eliminated by the DNA-damage checkpoint. Here we show that the DNA-damage checkpoint eliminates oocytes via the pro-apoptotic BCL-2 pathway members Puma, Noxa and Bax. Deletion of these factors prevents oocyte elimination in recombination-repair mutants, even when the abundance of unresolved DSBs is high. Remarkably, surviving oocytes can extrude a polar body and be fertilised, despite chaotic chromosome segregation at the first meiotic division. Our findings raise the possibility that allelic variants of the BCL-2 pathway could influence the risk of embryonic aneuploidy

    Dynamic Proteomic Profiling of Extra-Embryonic Endoderm Differentiation in Mouse Embryonic Stem Cells.

    Get PDF
    During mammalian preimplantation development, the cells of the blastocyst's inner cell mass differentiate into the epiblast and primitive endoderm lineages, which give rise to the fetus and extra-embryonic tissues, respectively. Extra-embryonic endoderm (XEN) differentiation can be modeled in vitro by induced expression of GATA transcription factors in mouse embryonic stem cells. Here, we use this GATA-inducible system to quantitatively monitor the dynamics of global proteomic changes during the early stages of this differentiation event and also investigate the fully differentiated phenotype, as represented by embryo-derived XEN cells. Using mass spectrometry-based quantitative proteomic profiling with multivariate data analysis tools, we reproducibly quantified 2,336 proteins across three biological replicates and have identified clusters of proteins characterized by distinct, dynamic temporal abundance profiles. We first used this approach to highlight novel marker candidates of the pluripotent state and XEN differentiation. Through functional annotation enrichment analysis, we have shown that the downregulation of chromatin-modifying enzymes, the reorganization of membrane trafficking machinery, and the breakdown of cell-cell adhesion are successive steps of the extra-embryonic differentiation process. Thus, applying a range of sophisticated clustering approaches to a time-resolved proteomic dataset has allowed the elucidation of complex biological processes which characterize stem cell differentiation and could establish a general paradigm for the investigation of these processes.This work was supported by the European Union 7th Framework Program (PRIME-XS project grant number 262067 to K.S.L., L.G and C.M.M), the Biotechnology and Biological Sciences Research Council (BBSRC grant number BB/L002817/1 to K.S.L and L.G.), as well as a HFSP grant (RGP0029/2010) and a European Research Council (ERC) Advanced Investigator grant to A.M.A.. C.S was supported by an EMBO long term fellowship and a Marie Curie IEF. L.T.Y.C. and K.K.N. were supported by the Medical Research Council (MRC, UK, MC_UP_1202/9) and the March of Dimes Foundation (FY11-436). We also thank Professor Steve Oliver and Dr. A.K.Hadjantonakis for helpful discussions and advice.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/stem.206

    Electroconvulsive therapy for a patient with suicide by drinking bleach during treatment of COVID-19: A case report

    Get PDF
    Electroconvulsive therapy (ECT) was first experienced in 1938 and had been conducting without anesthesia for 30 years. In this study, the most common indication for ECT was mood disorder (major depressive disorder and bipolar I disorder). We introduce a patient with a history of COVID-19 and suicide who required emergency ECT. Electroconvulsive therapy can be life-saving in patients with suicide history or catatonic schizophrenia. Health workers are at the front line of the COVID-19 outbreak control and must follow health instructions. Aerosol-producing procedures such as suction in anesthesia for ECT may facilitate the transmission of infectious diseases such as COVID-19. When performing aerosol-producing procedures during the pandemic of novel coronavirus, every patient should be considered suspicious. © 2020, Author(s)

    IGF1-mediated human embryonic stem cell self-renewal recapitulates the embryonic niche.

    Get PDF
    Our understanding of the signalling pathways regulating early human development is limited, despite their fundamental biological importance. Here, we mine transcriptomics datasets to investigate signalling in the human embryo and identify expression for the insulin and insulin growth factor 1 (IGF1) receptors, along with IGF1 ligand. Consequently, we generate a minimal chemically-defined culture medium in which IGF1 together with Activin maintain self-renewal in the absence of fibroblast growth factor (FGF) signalling. Under these conditions, we derive several pluripotent stem cell lines that express pluripotency-associated genes, retain high viability and a normal karyotype, and can be genetically modified or differentiated into multiple cell lineages. We also identify active phosphoinositide 3-kinase (PI3K)/AKT/mTOR signalling in early human embryos, and in both primed and naïve pluripotent culture conditions. This demonstrates that signalling insights from human blastocysts can be used to define culture conditions that more closely recapitulate the embryonic niche

    A roadmap for the Human Developmental Cell Atlas

    Get PDF
    The Human Developmental Cell Atlas (HDCA) initiative, which is part of the Human Cell Atlas, aims to create a comprehensive reference map of cells during development. This will be critical to understanding normal organogenesis, the effect of mutations, environmental factors and infectious agents on human development, congenital and childhood disorders, and the cellular basis of ageing, cancer and regenerative medicine. Here we outline the HDCA initiative and the challenges of mapping and modelling human development using state-of-the-art technologies to create a reference atlas across gestation. Similar to the Human Genome Project, the HDCA will integrate the output from a growing community of scientists who are mapping human development into a unified atlas. We describe the early milestones that have been achieved and the use of human stem-cell-derived cultures, organoids and animal models to inform the HDCA, especially for prenatal tissues that are hard to acquire. Finally, we provide a roadmap towards a complete atlas of human development

    Genome editing reveals a role for OCT4 in human embryogenesis.

    Get PDF
    Despite their fundamental biological and clinical importance, the molecular mechanisms that regulate the first cell fate decisions in the human embryo are not well understood. Here we use CRISPR-Cas9-mediated genome editing to investigate the function of the pluripotency transcription factor OCT4 during human embryogenesis. We identified an efficient OCT4-targeting guide RNA using an inducible human embryonic stem cell-based system and microinjection of mouse zygotes. Using these refined methods, we efficiently and specifically targeted the gene encoding OCT4 (POU5F1) in diploid human zygotes and found that blastocyst development was compromised. Transcriptomics analysis revealed that, in POU5F1-null cells, gene expression was downregulated not only for extra-embryonic trophectoderm genes, such as CDX2, but also for regulators of the pluripotent epiblast, including NANOG. By contrast, Pou5f1-null mouse embryos maintained the expression of orthologous genes, and blastocyst development was established, but maintenance was compromised. We conclude that CRISPR-Cas9-mediated genome editing is a powerful method for investigating gene function in the context of human development.DW was supported by the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre Programme. NK was supported by the University of Oxford Clarendon Fund. AB was supported by a British Heart Foundation PhD Studentship (FS/11/77/39327). LV was supported by core grant funding from the Wellcome Trust and Medical Research Council (PSAG028). J-SK was supported by the Institute for Basic Science (IBS-R021-D1). Work in the KKN and JMAT labs was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK, the UK Medical Research Council, and the Wellcome Trust (FC001120 and FC001193)

    Transcriptome Analysis during Human Trophectoderm Specification Suggests New Roles of Metabolic and Epigenetic Genes

    Get PDF
    In humans, successful pregnancy depends on a cascade of dynamic events during early embryonic development. Unfortunately, molecular data on these critical events is scarce. To improve our understanding of the molecular mechanisms that govern the specification/development of the trophoblast cell lineage, the transcriptome of human trophectoderm (TE) cells from day 5 blastocysts was compared to that of single day 3 embryos from our in vitro fertilization program by using Human Genome U133 Plus 2.0 microarrays. Some of the microarray data were validated by quantitative RT-PCR. The TE molecular signature included 2,196 transcripts, among which were genes already known to be TE-specific (GATA2, GATA3 and GCM1) but also genes involved in trophoblast invasion (MUC15), chromatin remodeling (specifically the DNA methyltransferase DNMT3L) and steroid metabolism (HSD3B1, HSD17B1 and FDX1). In day 3 human embryos 1,714 transcripts were specifically up-regulated. Besides stemness genes such as NANOG and DPPA2, this signature included genes belonging to the NLR family (NALP4, 5, 9, 11 and 13), Ret finger protein-like family (RFPL1, 2 and 3), Melanoma Antigen family (MAGEA1, 2, 3, 5, 6 and 12) and previously unreported transcripts, such as MBD3L2 and ZSCAN4. This study provides a comprehensive outlook of the genes that are expressed during the initial embryo-trophectoderm transition in humans. Further understanding of the biological functions of the key genes involved in steroidogenesis and epigenetic regulation of transcription that are up-regulated in TE cells may clarify their contribution to TE specification and might also provide new biomarkers for the selection of viable and competent blastocysts
    corecore