258 research outputs found

    Anaerobic conversion of hydrogen and carbon dioxide to fatty acids production in a membrane biofilm reactor: a modeling approach

    Get PDF
    Biological conversion of gaseous compounds (e.g., H/CO) into valuable liquid fuels or chemicals using mixed culture is a promising technology, which could be effectively and efficiently implemented in a membrane biofilm reactor (MBfR) with gas being supplied from inside of membranes. In this study, a model integrating multiple production pathways of fatty acids (including acetate, butyrate, and caproate) was developed and tested using reported mixed culture experimental data from a lab-scale MBfR fed with 60% H and 40% CO. The uncertainty of the four estimated model parameters was explored by a sensitivity analysis. With the developed model, the impacts of key process parameters (i.e., gas supply and hydraulic retention time (HRT)) on the performance of the MBfR converting H/CO to fatty acids were then investigated. The results show that a high HRT is imperative for chain elongation to produce a higher proportion of caproate with a higher added value. A proper gas supply should be provided to favour the speciation of biological gas conversion products as well as to fully exploit the conversion capacity of the MBfR. The findings of this work provide useful information for a better understanding and further applications of this MBfR technology for mixed culture syngas fermentation

    Enhancing the production of volatile fatty acids by potassium permanganate from wasted sewage sludge: A batch test experiment

    Get PDF
    Recovering resources from wastewater treatment is vital for the transition from a linear to a circular economy model in the water sector. Volatile Fatty Acids (VFAs) are valuable products among the possible recovered resources. This study investigates the influence of potassium permanganate (KMnO4) addition during acidogenic fermentation of waste activated sludge for enhancing VFAs production. Specifically, different fermentation batch tests with and without KMnO4 addition were carried out using two distinctive sewage sludges as feedstocks. Results showed that KMnO4 addition increased the VFAs yield up to 144 and 196 mgCOD/g VSS for the two sludges. When KMnO4 was used as pre-treatment, 55 % of sCOD were VFAs. This latter result was mainly debited to the recalcitrant organics’ disruption promoted by the oxidative permanganate ability

    Perchlorate, nitrate, and sulfate reduction in hydrogen-based membrane biofilm reactor : model-based evaluation

    Get PDF
    © 2017 Elsevier B.V. A biofilm model was developed to evaluate the key mechanisms including microbially-mediated ClO4−, NO3−, and SO42−reduction in the H2-based membrane biofilm reactor (MBfR). Sensitivity analysis indicated that the maximum growth rate of H2-based denitrification (μ1) and maximum growth rate of H2-based SO42−reduction (μ3) could be reliably estimated by fitting the model predictions to the experimental measurements. The model was first calibrated using the experimental data of a single-stage H2-based MBfR fed with different combinations of ClO4−, NO3−, and/or SO42−together with a constant dissolved oxygen (DO) concentration at three operating stages. μ1and μ3were determined at 0.133 h−1and 0.0062 h−1, respectively, with a good level of identifiability. The model and the parameter values were further validated based on the experimental data of a two-stage H2-based MBfR system fed with ClO4−, NO3−, SO42−, and DO simultaneously but at different feeding rates during two running phases. The validated model was then applied to evaluate the quantitative and systematic effects of key operating conditions on the reduction of ClO4−, NO3−, and SO42−as well as the steady-state microbial structure in the biofilm of a single-stage H2-based MBfR. The results showed that i) a higher influent ClO4−concentration led to a higher ClO4−removal efficiency, compensated by a slightly decreasing SO42−removal; ii) the H2loading should be properly managed at certain critical level to maximize the ClO4−and NO3−removal while limiting the growth of sulfate reducing bacteria which would occur in the case of excessive H2supply; and iii) a moderate hydraulic retention time and a relatively thin biofilm were required to maintain high-level removal of ClO4−and NO3−but restrict the SO42−reduction

    Recent advances in mathematical modeling of nitrous oxides emissions from wastewater treatment processes

    Get PDF
    Nitrous oxide (NO) can be emitted from wastewater treatment contributing to its greenhouse gas footprint significantly. Mathematical modeling of NO emissions is of great importance toward the understanding and reduction of the environmental impact of wastewater treatment systems. This article reviews the current status of the modeling of NO emissions from wastewater treatment. The existing mathematical models describing all the known microbial pathways for NO production are reviewed and discussed. These included NO production by ammonia-oxidizing bacteria (AOB) through the hydroxylamine oxidation pathway and the AOB denitrification pathway, NO production by heterotrophic denitrifiers through the denitrification pathway, and the integration of these pathways in single NO models. The calibration and validation of these models using lab-scale and full-scale experimental data is also reviewed. We conclude that the mathematical modeling of NO production, while is still being enhanced supported by new knowledge development, has reached a maturity that facilitates the estimation of site-specific NO emissions and the development of mitigation strategies for a wastewater treatment plant taking into the specific design and operational conditions of the plant

    Stratified microbial structure and activity in sulfide- and methane- producing anaerobic sewer biofilms

    Get PDF
    Simultaneous production of sulfide and methane by anaerobic sewer biofilms has recently been observed, suggesting that sulfate-reducing bacteria (SRB) and methanogenic archaea (MA), microorganisms known to compete for the same substrates, can coexist in this environment. This study investigated the community structures and activities of SRB and MA in anaerobic sewer biofilms (average thickness of 800 mu m) using a combination of microelectrode measurements, molecular techniques, and mathematical modeling. It was seen that sulfide was mainly produced in the outer layer of the biofilm, between the depths of 0 and 300 mu m, which is in good agreement with the distribution of SRB population as revealed by cryosection-fluorescence in situ hybridization (FISH). SRB had a higher relative abundance of 20% on the surface layer, which decreased gradually to below 3% at a depth of 400 mu m. In contrast, MA mainly inhabited the inner layer of the biofilm. Their relative abundances increased from 10% to 75% at depths of 200 mu m and 700 mu m, respectively, from the biofilm surface layer. High-throughput pyrosequencing of 16S rRNA amplicons showed that SRB in the biofilm were mainly affiliated with five genera, Desulfobulbus, Desulfomicrobium, Desulfovibrio, Desulfatiferula, and Desulforegula, while about 90% of the MA population belonged to the genus Methanosaeta. The spatial organizations of SRB and MA revealed by pyrosequencing were consistent with the FISH results. A biofilm model was constructed to simulate the SRB and MA distributions in the anaerobic sewer biofilm. The good fit between model predictions and the experimental data indicate that the coexistence and spatial structure of SRB and MA in the biofilm resulted from the microbial types and their metabolic transformations and interactions with substrates

    Biotransformation of acyclovir by an enriched nitrifying culture

    Get PDF
    This work evaluates the biodegradation of the antiviral drug acyclovir by an enriched nitrifying culture during ammonia oxidation and without the addition of ammonium. The study on kinetics was accompanied with the structural elucidation of biotransformation products through batch biodegradation experiments at two different initial levels of acyclovir (15 mg L and 15 μg L). The pseudo first order kinetic studies of acyclovir in the presence of ammonium indicated the higher degradation rates under higher ammonia oxidation rates than those constant degradation rates in the absence of ammonium. The positive correlation was found between acyclovir degradation rate and ammonia oxidation rate, confirming the cometabolism of acyclovir by the enriched nitrifying culture in the presence of ammonium. Formation of the product carboxy-acyclovir (P239) indicated the main biotransformation pathway was aerobic oxidation of the terminal hydroxyl group, which was independent on the metabolic type (i.e. cometabolism or metabolism). This enzyme-linked reaction might be catalyzed by monooxygenase from ammonia oxidizing bacteria or heterotrophs. The formation of carboxy-acyclovir was demonstrated to be irrelevant to the acyclovir concentrations applied, indicating the revealed biotransformation pathway might be the dominant removal pathway of acyclovir in wastewater treatment

    Significant change in the electronic behavior associated with structural distortions in the single crystalline SrAg4As2

    Full text link
    We report a combined study of transport and thermodynamic measurements on the layered pnictide material SrAg4As2. Upon cooling, a drop in electrical and Hall resistivity, a jump in heat capacity and an increase in susceptibility and magnetoresistance (MR) are observed around 110 K. These observations suggest that non-magnetic phase transitions emerge at around 110 K, that are likely associated with structural distortions. In sharp contrast with the first-principles calculations based on the crystal structure at room temperature, quantum oscillations reveal small Fermi pockets with light effective masses, suggesting a significant change in the Fermi surface topology caused by the low temperature structural distortion. No superconductivity emerges in SrAg4_4As2_2 down to 2 K and under pressures up to 2.13 GPa; instead, the low temperature structural distortion increases linearly with temperature at a rate of ~13 K/GPa above 0.89 GPa

    Assessment of heterotrophic growth supported by soluble microbial products in anammox biofilm using multidimensional modeling

    Get PDF
    Anaerobic ammonium oxidation (anammox) is known to autotrophically convert ammonium to dinitrogen gas with nitrite as the electron acceptor, but little is known about their released microbial products and how these are relative to heterotrophic growth in anammox system. In this work, we applied a mathematical model to assess the heterotrophic growth supported by three key microbial products produced by bacteria in anammox biofilm (utilization associated products (UAP), biomass associated products (BAP), and decay released substrate). Both One-dimensional and two-dimensional numerical biofilm models were developed to describe the development of anammox biofilm as a function of the multiple bacteria-substrate interactions. Model simulations show that UAP of anammox is the main organic carbon source for heterotrophs. Heterotrophs are mainly dominant at the surface of the anammox biofilm with small fraction inside the biofilm. 1-D model is sufficient to describe the main substrate concentrations/fluxes within the anammox biofilm, while the 2-D model can give a more detailed biomass distribution. The heterotrophic growth on UAP is mainly present at the outside of anammox biofilm, their growth on BAP (HetB) are present throughout the biofilm, while the growth on decay released substrate (HetD) is mainly located in the inner layers of the biofilm

    Evaluating two concepts for the modelling of intermediates accumulation during biological denitrification in wastewater treatment

    Get PDF
    The accumulation of the denitrification intermediates in wastewater treatment systems is highly undesirable, since both nitrite and nitric oxide (NO) are known to be toxic to bacteria, and nitrous oxide (N2O) is a potent greenhouse gas and an ozone depleting substance. To date, two distinct concepts for the modelling of denitrification have been proposed, which are represented by the Activated Sludge Model for Nitrogen (ASMN) and the Activated Sludge Model with Indirect Coupling of Electrons (ASM-ICE), respectively. The two models are fundamentally different in describing the electron allocation among different steps of denitrification. In this study, the two models were examined and compared in their ability to predict the accumulation of denitrification intermediates reported in four different experimental datasets in literature. The N-oxide accumulation predicted by the ASM-ICE model was in good agreement with values measured in all four cases, while the ASMN model was only able to reproduce one of the four cases. The better performance of the ASM-ICE model is due to that it adopts an “indirect coupling” modelling concept through electron carriers to link the carbon oxidation and the nitrogen reduction processes, which describes the electron competition well. The ASMN model, on the other hand, is inherently limited by its structural deficiency in assuming that carbon oxidation is always able to meet the electron demand by all denitrification steps, therefore discounting electron competition among these steps. ASM-ICE therefore offers a better tool for predicting and understanding intermediates accumulation in biological denitrification
    corecore