353 research outputs found
A Low-Cost Dual-Band RF Power Amplifier for Wireless Communication Systems
This paper presents a design of a low-cost concurrent dual-band power amplifier operating at 1.8 GHz and 2.6 GHz. The design combines the signal splitting and second harmonic suppression techniques. The power amplifier aims at achieving the high-efficiency while rejecting unwanted output mixing products when operating in the dual-band mode. These advantages are obtained by using a harmonic termination technique combining with a signal splitting method. The designed amplifier is tested at both small- and large-signal performance through simulations and measurements. The designed amplifier delivers 10.2 dB Gain, 41.2 dBm Pout, and PAE of 40.2 % at 1.8 GHz and 10.1 dB Gain, 41.1 dBm Pout, and PAE of 38.7 % at 2.6 GHz. The second harmonic suppression for 1.8 GHz band is 49 dBc while the second harmonic for the 2.6 GHz is nearly total suppression. In addition, by using the proposed circuit, the unwanted mixing products can be significantly reduced improving linearity performance
A Low-Cost Dual-Band RF Power Amplifier for Wireless Communication Systems
This paper presents a design of a low-cost concurrent dual-band power amplifier operating at 1.8 GHz and 2.6 GHz. The design combines the signal splitting and second harmonic suppression techniques. The power amplifier aims at achieving the high-efficiency while rejecting unwanted output mixing products when operating in the dual-band mode. These advantages are obtained by using a harmonic termination technique combining with a signal splitting method. The designed amplifier is tested at both small- and large-signal performance through simulations and measurements. The designed amplifier delivers 10.2 dB Gain, 41.2 dBm Pout, and PAE of 40.2 % at 1.8 GHz and 10.1 dB Gain, 41.1 dBm Pout, and PAE of 38.7 % at 2.6 GHz. The second harmonic suppression for 1.8 GHz band is 49 dBc while the second harmonic for the 2.6 GHz is nearly total suppression. In addition, by using the proposed circuit, the unwanted mixing products can be significantly reduced improving linearity performance
Continuous transformation of chiral pharmaceuticals in enzymatic membrane bioreactors for advanced wastewater treatment
This study demonstrates continuous enantiomeric inversion and further biotransformation of chiral profens including ibuprofen, naproxen and ketoprofen by an enzymatic membrane bioreactor (EMBR) dosed with laccase. The EMBR showed non-enantioselective transformations, with high and consistent transformation of both (R)- and (S)-ibuprofen (93 ± 6%, n = 10), but lower removals of both enantiomers of naproxen (46 ± 16%, n = 10) and ketoprofen (48 ± 17%, n = 10). Enantiomeric analysis revealed a bidirectional but uneven inversion of the profens, for example 14% inversion of (R)- to (S)- compared to 4% from (S)- to (R)-naproxen. With redox-mediator addition, the enzymatic chiral inversion of both (R)- and (S)-profens remained unchanged, although the overall conversion became enantioselective; except for (S)-naproxen, the addition of redox mediator promoted the degradation of (R)-profens only
Comparative Analysis of Swine Antibody Responses Following Vaccination with Live-Attenuated and Killed African Swine Fever Virus Vaccines
African swine fever virus (ASFV) is circulating in many swine-producing countries, causing significant economic losses. It is observed that pigs experimentally vaccinated with a live-attenuated virus (LAV) but not a killed virus (KV) vaccine develop solid homologous protective immunity. The objective of this study was to comparatively analyze antibody profiles between pigs vaccinated with an LAV vaccine and those vaccinated with a KV vaccine to identify potential markers of vaccineinduced protection. Thirty ASFV seronegative pigs were divided into three groups: Group 1 received a single dose of an experimental LAV, Group 2 received two doses of an experimental KV vaccine, and Group 3 was kept as a non-vaccinated (NV) control. At 42 days post-vaccination, all pigs were challenged with the parental virulent ASFV strain and monitored for 21 days. All pigs vaccinated with the LAV vaccine survived the challenge. In contrast, eight pigs from the KV group and seven pigs from the NV group died within 14 days post-challenge. Serum samples collected on 41 days post-vaccination were analyzed for their reactivity against a panel of 29 viral structural proteins. The sera of pigs from the LAV group exhibited a strong antibody reactivity against various viral structural proteins, while the sera of pigs in the KV group only displayed weak antibody reactivity against the inner envelope (p32, p54, p12). There was a negative correlation between the intensity of antibody reactivity against five ASFV antigens, namely p12, p14, p15, p32, and pD205R, and the viral DNA titers in the blood of animals after the challenge infection. Thus, antibody reactivities against these five antigens warrant further evaluation as potential indicators of vaccine-induced protection
Assessment of the Effectiveness of Ich Tam Khang as a Supportive Therapy for Chronic Heart Failure
Background: Heart failure is a chronic disease needing lifelong management. Despite the advances that have been made in the treatment of the disease, both the longevity and quality of life for those with chronic heart failure remain impaired. A more effective therapeutic approach with less negative side effects is still needed. In this study, we evaluate Ich Tam Khang (ITK), the poly-ingredient herbal and nutritional preparation with multiple physiological actions, as a supportive therapy for patients with chronic heart failure.Aims of Study: To evaluate the effectiveness and safety of Ich Tam Khang as an adjunctive treatment of chronic heart failure.Methods: A total of 60 patients with chronic congestive heart failure were enrolled in this open label, cross-sectional and prospective study. All patients were treated with a conventional regimen (digoxin, diuretics, angiotensin-converting-enzyme (ACE) inhibitors or angiotensin II receptor blockers (ARBs), beta blockers) for at least 4 weeks before being divided into two equal groups. In the treated patients with ITK, patients received conventional therapy plus 4 tablets ITK per day added in two divided doses. In the control patients, all patients kept the same conventional regimen without ITK. All patients were followed up for 3 months for clinical and para-clinical outcomes.Result: The symptoms of heart failure (dyspnea, palpitation, peripheral edema, neck vein distention, heptojugular reflex) decreased. Heart rate and blood pressure stabilized during treatment in the treated patients with ITK. Additionally, total cholesterol and HDL-cholesterol normalized in the patients treated with ITK. Most of echocardiography parameters in the ITK treated patients were superior to the control patients. ITK is safe and it has no side effects.Conclusion: ITK as a combination of herbal and nutritional preparation is effective in reducing heart failure symptoms, improving patient's quality of life for the patients with decompensated heart failure and reducing total cholesterol and LDL-C
A novel approach in crude enzyme laccase production and application in emerging contaminant bioremediation
Laccase enzyme from white-rot fungi is a potential biocatalyst for the oxidation of emerging contaminants (ECs), such as pesticides, pharmaceuticals and steroid hormones. This study aims to develop a three-step platform to treat ECs: (i) enzyme production, (ii) enzyme concentration and (iii) enzyme application. In the first step, solid culture and liquid culture were compared. The solid culture produced significantly more laccase than the liquid culture (447 vs. 74 μM/min after eight days), demonstrating that white rot fungi thrived on a solid medium. In the second step, the enzyme was concentrated 6.6 times using an ultrafiltration (UF) process, resulting in laccase activity of 2980 μM/min. No enzymatic loss due to filtration and membrane adsorption was observed, suggesting the feasibility of the UF membrane for enzyme concentration. In the third step, concentrated crude enzyme was applied in an enzymatic membrane reactor (EMR) to remove a diverse set of ECs (31 compounds in six groups). The EMR effectively removed of steroid hormones, phytoestrogen, ultraviolet (UV) filters and industrial chemical (above 90%). However, it had low removal of pesticides and pharmaceuticals
Environmental contamination with clostridioides (Clostridium) difficile in Vietnam
AIMS: To investigate the prevalence, molecular type, and antimicrobial susceptibility of Clostridioides difficile in the environment in Vietnam, where little is known about C. difficile. METHODS AND RESULTS: Samples of pig faeces, soils from pig farms, potatoes, and the hospital environment were cultured for C. difficile. Isolates were identified and typed by polymerase chain reaction (PCR) ribotyping. The overall prevalence of C. difficile contamination was 24.5% (68/278). Clostridioides difficile was detected mainly in soils from pig farms and hospital soils, with 70%-100% prevalence. Clostridioides difficile was isolated from 3.4% of pig faecal samples and 5% of potato surfaces. The four most prevalent ribotypes (RTs) were RTs 001, 009, 038, and QX574. All isolates were susceptible to metronidazole, fidaxomicin, vancomycin, and amoxicillin/clavulanate, while resistance to erythromycin, tetracycline, and moxifloxacin was common in toxigenic strains. Clostridioides difficile RTs 001A+B+CDT- and 038A-B-CDT- were predominantly multidrug resistant. CONCLUSIONS: Environmental sources of C. difficile are important to consider in the epidemiology of C. difficile infection in Vietnam, however, contaminated soils are likely to be the most important source of C. difficile. This poses additional challenges to controlling infections in healthcare settings
Microfluidic impedance biosensors for monitoring a single and multiple cancer cells in anticancer drug treatments
In this work, we present a novel microfluidic impedance biosensor chip for trapping both a single and multiple cancer cells and monitoring their response to the anti-cancer drug treatment. By designing different sizes of working microelectrodes together with the V-shaped cell capture structures, a single or multiple cells are trapped on the microelectrodes surfaces. In addition, by utilizing the passive pumping method, cells can be trapped and positioned inside the microchannels without the need of using the outer micro pump or syringe. The impedance change induced by the response of cells to the anticancer drug Cisplatin treatment was successfully recorded. The proposed biosensor chip has a great potential for applications in cancer cell research, drug screening, and quantification of cancer cells from various tumor stages. The results of this study open potential research collaborations about development of cost-effective devices and lab-on-chips for early disease detection, studies of cancerous cells and their response to anti-cancer drugs to optimize cancer treatments, characterisation of mechanical properties of cells, new drug delivery mechanisms, and micro and nano manufacturing
- …