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Abstract: 

This study demonstrates continuous enantiomeric inversion and further biotransformation of 

chiral profens including ibuprofen, naproxen and ketoprofen by an enzymatic membrane 

bioreactor (EMBR). The EMBR dosed with laccase showed non-enantioselective 

transformations, with high and consistent transformation of both (R)- and (S)-ibuprofen (93 ± 6 

%, n=10), but lower removals of both enantiomers of naproxen (46 ± 16 %, n=10) and 

ketoprofen (48 ± 17 %, n=10). Enantiomeric analysis revealed a bidirectional but uneven 

inversion of the profens, for example 14% inversion of (R)- to (S)- compared to 4% from (S)- to 

(R)-naproxen. With redox-mediator addition, the enzymatic chiral inversion of both (R)-/(S)-

profens remained unchanged, although the overall conversion became enantioselective:  except 

for (S)-naproxen, the addition of redox mediator promoted the degradation of (R)-profens only.  

Keywords: biotransformation; chiral pharmaceuticals; enzymatic membrane bioreactor; 

enantiomeric inversion; enantioselective; redox-mediator 

 

1. Introduction 

Pharmaceuticals are continuously released into the environment from households, animal 

husbandries, aquacultures, and the pharmaceutical manufacturing industry either in 

unmetabolized or partially metabolized forms (Mompelat et al., 2009). They eventually end up in 

wastewater and aquatic environment in the concentrations of a few ng/L to several µg/L (Hai et 

al., 2014; Luo et al., 2014; Tran et al., 2013). More than 50% of pharmaceuticals are chiral. In 

other words, they exist as either (R)- or (S)-enantiomers (Khan, 2014; Nguyen et al., 2006). 

Although chiral compounds have similar physical and chemical properties, the biodegradability 

and toxicity of enantiomers can differ significantly (Khan, 2014; MacLeod et al., 2007; Nguyen 

et al., 2006). For instance,  biotransformation of (S)- ibuprofen was faster  than (R)- ibuprofen in 

a constructed wetland (Hijosa-Valsero et al., 2010). (S)-enantiomer of  ibuprofen, naproxen, and 

propranolol had higher rates of biotransformation  than the corresponding (R)- enantiomers in an 

aerobic wastewater treatment plant (Fono & Sedlak, 2005). The toxic effects of fluoxetine, a 

chiral pharmaceutical widely used for treatment of depression, are enantiomer-dependent with 

(S)- exhibiting greater toxicity to Pimephales promelas than (R)- fluoxetine (MacLeod et al., 

2007).  

When assessing the effectiveness of wastewater treatment systems, most studies have monitored 

the removal of racemic mixtures without consideration of their enantiomeric forms (Luo et al., 

2014) . Only a few studies attempted to observe chiral inversion using pure enantiomer (Hashim 

et al., 2011; Kasprzyk-Hordern & Baker, 2011). However, those studies have tended to highlight 

the preferential degradation of one enantiomer (e.g., (S)- over (R)- ibuprofen, and (R)- over (S)-

ketoprofen).  

An enzymatic membrane bioreactor (EMBR) combines enzymatic treatment and ultrafiltration to 

completely retain the enzymes within the reactor and enable enzyme replenishment during 

continuous operation (Ji et al., 2016; Modin et al., 2014). Among the oxidoreductase enzymes, 

laccases (E.C. 1.10.3.2) have received much attention due to their capacity to degrade phenolic 

and certain non-phenolic compounds. An EMBR dosed with laccase was reported to remove a 

broad spectrum of pharmaceuticals that are resistant to conventional biological processes 

(Nguyen et al., 2015). The degradation efficiency and substrate spectrum of laccase can be 
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enhanced by the addition of redox mediators, which form reactive radicals upon oxidation by 

laccase. The reactive radicals act as “electron shuttles” between laccase and the substrate, thus 

overcoming any effects of  steric hindrance  (Yang et al., 2013).  

Laccase and mediators have been used in the pharmaceutical industry, for example, as a mild aid 

in the deracemization process to synthesize pure enantiomers (Diaz-Rodriguez et al., 2015; 

Galletti et al., 2014). Diaz-Rodriguez et al. (2015) used laccase and the mediator 2,2,6,6-

tetramethylpiperidin-1-yloxy in the first step of deracemization of racemic 2-phenyl-1-propanol. 

A  laboratory-scale multiphase hollow fiber membrane reactor was employed to produce 

optically pure butyrate by the lipase-catalyzed reaction of racemic glycidyl butyrate (Wu et al., 

1993). However, enzymatic chiral inversion and further transformation of pharmaceuticals in 

water have not been investigated yet.    

This study investigates the fate of three chiral pharmaceuticals (“profens”), namely ibuprofen, 

naproxen and ketoprofen during EMBR treatment. Pure (R)- and (S)-enantiomers were used to 

facilitate the observation of chiral inversion. A preliminary assessment of enantiomeric 

transformation of the compounds by laccase was performed in a series of batch tests. This was 

followed by long-term observation of the fate of the profens during continuous treatment by an 

EMBR. The impact of addition of a redox mediator, 1-hydroxybenzotriazole (HBT), on the 

enzymatic transformation of the profens in the EMBR was also evaluated. Overall, this study 

provides unique insight into the fate of chiral pharmaceuticals at an enantiomeric level.  

2. Materials and methods 

2.1 Crude laccase preparation 

Crude laccase solution was collected from the culture of white-rot fungi Pleurotus ostreatus 

(ATCC 34675) grown in malt extract broth (2 g/L) (Merck, Germany). The fungi were incubated 

under sterile conditions on a rotary shaker at 70 rpm and 28 °C. After 3 days of incubation, the 

crude enzyme solution (i.e., the liquid portion of the culture) was extracted and stored at 4 °C. 

The laccase activity in crude enzyme solution was 50-60 µM(DMP)/min (measured using 2.6-

dimethoxyl phenol (DMP) as substrate).  

To allow EMBR operation with nominal addition of laccase, the crude enzyme solution was 

concentrated at a volumetric ratio of 20:1 using a spiral wound, tangential flow filtration 

membrane module (Merck Millipore, Australia) with a molecular weight cutoff of 1 kDa and 

surface area of 0.23 m2. The crude laccase solution was recirculated through the membrane at a 

cross-flow velocity of 0.007 m/s. The retentate was returned to the enzyme container, and the 

permeate was discarded. The final solution showed an activity of 500µM(DMP)/min, which is less 

than that expected based on the 20:1 concentration ratio. It was confirmed that the membrane 

effectively retained laccase (40 kDa) i.e., no enzyme activity was detected in the membrane 

permeate, however, laccase denaturation may have occurred due to shear stress during the 

filtration process (Ji et al., 2016; Modin et al., 2014).   

2.2 Chemicals 

Pure (R)- and (S)-enantiomers of ibuprofen, naproxen, and ketoprofen (Supplementary Data 

Table S1) and the redox mediator 1-hydroxybenzotriazole (HBT) were purchased from Sigma-

Aldrich (Australia). The profens were dissolved in pure methanol to make up stock solutions of 
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0.2 g/L each and stored at -18 °C until use. HBT was dissolved in Milli-Q water to make up a 

stock solution of 50 mM and stored at 4 °C.  

2.3 Batch tests 

A crude enzyme solution with an initial laccase activity of 50 µM(DMP)/min was used for the 

batch tests.  Profens were incubated with the crude enzyme with a nominal concentration of 5 

µg/L for each compound (actual concentrations were in the range of 1 to 3 µg/L). The first set 

contained only the R- enantiomers. Similarly, the second set contained (S)-profens and the final 

set included the racemic form of the compounds. All the beakers were covered with aluminium 

foil and incubated in a rotary shaker at 70 rpm and 28 °C (Bioline Shaker Incubator BL 8600, 

Edwards Group Pty. Ltd, NSW, Australia). The samples were collected at the intervals of 4, 8, 

12, 24, and 48 h for profen analysis. Control samples containing only profens in Milli-Q water 

were incubated in parallel. The whole test medium was diluted to 500 mL with Milli-Q water 

and filtered through 0.45 µm glass fibre filter (Filtech, Australia). All samples were then spiked 

with a standard solution of isotopically labelled versions of each analyte (50 ng) for isotope 

dilution quantitation. The samples were loaded to SPE cartridges under vacuum and maintained 

with a constant flow rate of 15 mL/min, rinsed with 5 mL Milli-Q water, and finally dried under 

a gentle nitrogen gas flow for 30 min. The samples were then analyzed by GC-MS/MS (see 

Section 2.5.2).  

2.4 Enzymatic membrane reactor design and operation protocol 

A laboratory scale EMBR system consisting of a 0.8 L (active volume) glass reactor was used 

(Supplementary Data Figure S2). A hollow fiber ultrafiltration (UF) membrane module made of 

polyacrylonitrile was submerged in the reactor. The membrane was supplied by Microza 

Membrane (Pall Corporation, NSW, Australia) and had a MWCO, surface area and clean water 

flux of 3 kDa, 0.2 m
2
 and 25 L/h bar, respectively. The membrane was operated at a flux of 0.5 

L/m
2
 h via a peristaltic pump (Masterflex L/S, USA) with 8 min on and 1 min off cycles. The 

reactor was placed in a water bath with a temperature controller unit (Julabo, Germany) to 

maintain the temperature at 28 °C. Dissolved oxygen concentration was maintained at 3 mg/L 

via an air pump (ACO-002, Zhejiang Sensen Industry Co. Ltd., Zhejiang, China) connected to a 

stone diffuser at the bottom of the reactor. The pH of the reactor supernatant remained at 5.6 ± 

0.2 (n=16) without any specific control. The EMBR was operated at a hydraulic retention time 

of 8 h. Transmembrane pressure (TMP) was continuously monitored using a high-resolution 

(±0.1 kPa) pressure sensor (SPER scientific 840064, Extech Equipment Pty. Ltd, Victoria, 

Australia) connected to a computer for data logging.  

The EMBR was first operated to confirm retention of the enzyme and the stability of enzymatic 

activity under the applied hydraulic conditions in this study. Crude laccase solution (12 mL) was 

diluted to a final volume of 0.8 L in the reactor by Milli-Q water to obtain an initial enzymatic 

activity of 50 µM(DMP)/min. Enzymatic activity in the permeate and supernatant was measured 

every 5 h to confirm that the membrane effectively retained the enzyme (i.e., no laccase activity 

was observed in the permeate). In addition to enzyme retention, the maintenance of enzymatic 

activity level during the EMBR operation is an important factor. Denaturation of enzyme due to 

various factors including physical, chemical and biological inhibitors and the effect of shear 

stress during filtration has been reported in the literature (Mendoza et al., 2011). In this study, the 

enzymatic activity was maintained stable at 50 µM(DMP)/min within the reactor by addition of 

concentrated crude laccase solution at 0.8 % of the reactor volume every 12 h.  
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The EMBR was then operated to investigate enantiomeric transformation for around 72 days 

(i.e., 18 days each for EMBR-(R)-profens, EMBR-(S)-profens, EMBR-(R)-profens with HBT, 

and EMBR-(S)-profens with HBT). A synthetic wastewater (i.e., profens in ultrapure water) was 

used to precisely assess the enzymatic conversion of the profens by the EMBR. The next 

experiment will involve the use of real wastewater, the effect of other operating parameters such 

as enzyme loading, initial profens concentrations, pH). In all experiments, each profen was 

added at an initial concentration of approximately 2.5 µg/L (actual measured concentrations of 

2.1 ± 0.2 µg/L (R)-ibuprofen, 2.2 ± 0.2 µg/L (R)-naproxen, 2.8 ± 0.1 µg/L (R)-ketoprofen, 2.4 ± 

0.1 µg/L (S)-ibuprofen, 2.4 ± 0.1 µg/L (S)-naproxen, and 2.7 ± 0.1 µg/L (S)-ketoprofen, n= 20). 

The concentration was selected based on the commonly reported concentration of profens in 

municipal wastewater. HBT was added continuously via a peristaltic pump at a flow rate of 0.5 

mL/min to achieve a mediator concentration of 10 µM in the reactor. Following each operation 

regime, the EMBR supernatant was discarded and the UF membrane was subjected to 

backwashing with 1 L Milli-Q water at a flux of 5 L/m
2
 h. The subsequent operation regime 

commenced with freshly introduced test solution to the reactor.  Although the feed contained 

either (R)- or (S)-profen, the concentration of both (R)- and (S)-profens in the permeate of the 

EMBR was monitored to calculate the removal efficiency and quantify any chiral inversion.  

2.5 Analytical methods 

2.5.1 Enzyme assay 

Laccase activity was determined by monitoring the oxidation of 10 mM DMP in 100 mM 

sodium citrate buffer solution (pH 4.5) over 2 min at room temperature. The measurement was 

based on monitoring the change in absorbance at a wavelength of 468 nm by a 

spectrophotometer (UV-Visible UV-1700, Shimadzu, Kyoto, Japan). Laccase activity was 

calculated from the molar extinction coefficient ε = 49.6/mM.cm and expressed in µM(DMP)/min.  

2.5.2 Chiral pharmaceutical analysis 

The method used for GC-MS/MS analysis has been previously described and validated (Hashim 

& Khan, 2011). Briefly, the enantioseparations of analytes were performed on a HP5-MS fused 

silica capillary column (30 m x 0.25 mm I.D. x 0.25 µm film thickness) with 0.8 mL/min helium 

flow. The injector, interface and source temperature were 270, 260 and 280 °C, respectively. 

Samples were injected (1 µL) in splitless mode with a purge delay of 1 min. GC oven 

temperature was programmed initially at 120 ºC for 1 min, then increased by 40 °C per min to 

240 ºC and finally by 5 °C per min to 300 ºC and maintained for 4 min. The total run time was 

18 min per sample. The quantitative detection limit of this analytical method was 5 ng/L. The 

removal of (R)- and (S)-profens was calculated using Equation 1 and 2. 

Removal	efficiency	of	���enantiomer	�%� 	=
�� −	��

��
× 100 Equation 1 

Removal	efficiency	of	���enantiomer	�%� 	=
�� −	��

��
× 100 Equation 2 

Where; RF and SF is the concentration of (R)- and (S)-enantiomer in the feed and RP and SP is the 

concentration of (R)- and (S)-enantiomer in the permeate.  
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The relative concentration of enantiomers of the chiral compounds was expressed as the 

enantiomeric fraction (EF). The EF of the feed was calculated using Equation 3 and 4 where the 

feed contained (R)-enantiomer and (S)-enantiomer, respectively.   

		��� = 	
��

�� + ��
 Equation 3 

�� =	
��

�� + ��
  Equation 4 

The same calculations were used to calculate EF for the permeate as the feed.  

For enantiomerically pure starting materials EF equals 1 and in that case reduction in EF 

following treatment can be used to identify chiral inversion. 

The Student’s t-test was performed to verify if the removal efficiency of the enantiomers of a 

specific compound was statistically different (i.e., p value < 0.05).   

3. Results and discussion 

3.1 Laccase degradation of profens in batch experiments 

[FIGURE 1] 

The removal of an enantiomer (i.e., disappearance of the parent molecule) implies its chiral 

inversion and/or transformation to other metabolites. Figure 1 presents the removal of profens in 

the batch mode after 8 h of incubation. Under the laccase dose of 50 µM(DMP)/min and profen 

loading of 5 µg/L, the removals of all profens were below 30%. No improvement in the removal 

efficiency was observed when the incubation time was increased to 48 h (Figure 2). This is 

consistent with previous reports regarding batch enzymatic degradation systems where 

degradation products may interfere with further enzymatic degradation of the parent compound 

(Cajthaml, 2015; Tauber et al., 2005).  More importantly, as indicated by EF, no significant 

chiral inversion was observed in batch experiments (Figure 1). In other words, the pure 

enantiomers were oxidized mainly to other metabolites than the opposite enantiomer.  Possible 

metabolites of profens were not analyzed in this study, however, these can be identified from the 

relevant literature. For example, 1-hydroxyibuprofen, 1,2-dihydroxyibuprofen and  2-

hydroxyibuprofen are known metabolites from laccase  treatment of racemic ibuprofen (Marco-

Urrea et al., 2009). Notably, additional batch tests with racemic solutions showed a change in EF 

for naproxen (Figure 2). Because the pure enantiomers did not show chiral inversion in the batch 

tests, this change in EF of the racemic solution following enzymatic treatment does not mean 

chiral inversion, rather it implies different biodegradation rates for the (R) and (S) enantiomers.  

 [FIGURE 2] 

Overall, the batch tests with pure enantiomers demonstrated that the laccase used in this study 

could oxidize both (R)- and (S)-profens without any apparent chiral inversion or variability in 

removal rates. However, the reaction dynamics in a continuous flow EMBR are different from 

the batch test conditions. For example, in an EMBR, degradation products are continually 

removed from the reaction site. Indeed, Nguyen et al. (2015) demonstrated that an enzyme gel 
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layer formed on membrane retained pharmaceuticals and thus facilitated their degradation. Thus, 

further investigations with continuous flow EMBRs were conducted and the results are discussed 

in the following sections.  

 

3.2 Removal of profens by EMBR 

Figure 3 shows the removal efficiency of (R)- and (S)-profens during continuous treatment. 

Similar removal (i.e., either chiral inversion and/or transformation to other products) was 

observed for (R)- and (S)- ibuprofen (90 ± 5 and 93 ± 6 % (n= 10) removal, respectively). The 

ibuprofen removal observed in the current study is almost 20% higher than that in a previous 

study (Nguyen et al., 2015) where racemic ibuprofen instead of pure enantiomers was used. It is 

possible that the low removal of racemic ibuprofen in the previous study (Nguyen et al., 2015) 

was due to the competition of the two enantiomers for the active sites of laccase, or the inhibition 

of one enantiomer for the enzyme for which the other enantiomer is a substrate (Kasprzyk-

Hordern & Baker, 2011). However, this cannot be confirmed because in addition to the 

difference in feed (racemic mixture vs. pure enantiomers) a different laccase preparation was 

used in the previous study. The high removal of ibuprofen in this study was comparable with the 

reported data by other processes such as membrane bioreactors and white-rot fungi treatment. 

Hashim et al. (2011) obtained above 90% removal of ibuprofen by membrane bioreactors. A 

complete removal of ibuprofen was reported in (Marco-Urrea et al., 2009). However, the 

removal in those studies was analyzed as the sum of two enantiomers in influent and effluent.   

Compared to the high and consistent transformation of both (R)- and (S)-ibuprofen (93 ± 6 %, 

n=10), lower removals of both enantiomers of naproxen (46 ± 16 %, n=10) and ketoprofen (48 ± 

17 %, n=10) were observed. This observation is consistent with previous studies confirming 

higher resistance of naproxen and ketoprofen to enzymatic degradation compared to ibuprofen 

(Nguyen et al., 2015). Nguyen et al. (2015) reported that racemic naproxen and  ketoprofen were 

resistant to EMBR treatment possibly due to the presence of the carboxylic group (-COOH), 

which is an electron demanding functional group. A moderate removal of ketoprofen and 

naproxen also been reported in various study employed bacteria or fungi (Hashim et al., 2011; 

Luo et al., 2014).     

Compared to the batch tests (Figure 1), the EMBR showed a better removal efficiency of all 

profens (Figure 3). The higher removal of the profens by the EMBR may be due to retention of 

profens by a dynamically formed enzyme gel layer on the membrane, which may have facilitated 

further degradation. During the filtration process the enzyme can form a thin gel layer on the 

membrane (Modin et al., 2014). This thin enzyme gel layer may adsorb or retain the pollutants in 

the reactor and degrade them further as demonstrated in a previous EMBR study (Nguyen et al., 

2015), which, however, investigated racemic mixtures of profens, not their pure enantiomers.   

Enantioselective degradation i.e., preferential degradation of one enantiomer over the other has 

been reported in previous studies, where racemic mixtures were used (Hanlon et al., 1994; Hung 

et al., 1996). For example, Hanlon et al. (1994) reported that the fungus Verticillium  lecanii 

degraded (R)-ibuprofen  selectively when they used racemic ibuprofen. On the other hand, 

Hashim et al. (2011) observed preferential degradation of (S)-ibuprofen by conventional 

activated sludge. Enantioselective  degradation of chiral pharmaceuticals in the wastewater 

treatment plants can lead to the accumulation of certain enantiomers in the environment (Hashim 
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et al., 2010). The results of this study confirm that laccase degrades both (R) and (S) profens with 

similar efficiencies 

It is noted that to date the EMBR technology has not been well tested using real wastewater. So 

far, only one study successfully operated an EMBR for 100 h with minimal repetitive addition of 

enzyme for the removal of estrogenic compounds from filtered secondary effluent (Lloret et al., 

2013). The physical and chemical properties of the wastewater to be treated could adversely 

affect the enzymatic activity, stability and substrate specificity of the enzyme. These properties 

are important in process design and optimization of the enzyme treatment process and scale-up 

into pilot and full scale application. However, these features are beyond the scope of current 

study. This study confirms that laccase degrades both (R)- and (S)-profens with similar 

efficiencies which can be an important implication in propelling further studies on the above-

mentioned parameters.  

  

 [FIGURE 3] 

3.3 Chiral inversion of profens in EMBR 

The test solutions of (R)- and (S)-profens showed an EF of 0.99, indicating only trace impurities. 

Any decrease in EF during the EMBR treatment would indicate chiral inversion (Equation 3 and 

4). The concentrations of (R)- and (S)-profens and the EF in the permeate of the EMBR at 

different sampling events (Figure 4) illustrated a compound-specific bidirectional inversion of 

the chiral pharmaceuticals. This appears to be the first evidence of the bidirectional inversion of 

the tested profens i.e., ibuprofen, naproxen and ketoprofen. Previous studies have mostly 

reported unidirectional inversion of profens by microbes (Hashim et al., 2011; Hashim et al., 

2010; Hutt et al., 1993).  

[FIGURE 4] 

The EF of ibuprofen in the permeate was 0.82 ± 0.03 and 0.75 ± 0.04 (n = 10), when the feed 

contained (R)-ibuprofen and (S)-ibuprofen, respectively. The concentrations of (R)- and (S)- 

enantiomer in the permeate was quantified and calculated to be less than 2% of initial (S)- or (R)- 

enantiomer, respectively. This is low compared to the overall removal of over 90% of ibuprofen, 

meaning that ibuprofen was predominantly biotransformed to other metabolites.  

The EF of naproxen in the EMBR permeate was determined to be 0.74 ± 0.02 and 0.92 ± 0.01, (n 

= 10), when the feed contained (R)- and (S)- naproxen, respectively, confirming greater 

inversion of (R)- to (S)-naproxen. Compared to 46 ± 18 and 46 ± 13% overall removal of (R)- 

and (S)-naproxen (Figure 3), respectively, 14 ± 4 % of (R)-naproxen in the influent was inverted 

to (S)-enantiomer, while only 4 ± 1 % of (S)-naproxen was inverted to (R)-naproxen (Figure 4). 

The mode of enantiomeric inversion of naproxen by fungal laccase in this study appears to be 

somewhat different from that by bacteria. For example, a significant increase of (R)-naproxen in 

treated effluent was noticed after treatment of a synthetic wastewater containing (S)-naproxen by 

bacteria-dominated activated sludge (Hashim et al., 2011).  

A minor change in the EF of ketoprofen was observed when the EMBRs were fed with its (R)- or 

(S)-enantiomers, confirming minimal chiral inversion (Figure 4) and non-enantioselective 

biodegradation (Figure 3). Indeed ketoprofen is widely administered as a racemic mixture, and 

minimal enantioselectivity during human metabolism has been reported (Jamali & Brocks, 
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1990). Hashim et al. (2011) also observed no significant change in EF of ketoprofen during 

treatment by bacteria-dominated activated sludge.  

3.4 Impact of redox mediator dosing  

In previous studies, laccase-mediator systems have been demonstrated to enhance the removal 

efficiency of pharmaceuticals (Nguyen et al., 2014; Yang et al., 2013). Two factors contribute to 

the enhanced performance of the mediator-amended enzyme systems  i) reduction of steric 

hindrance, and ii) higher redox potential of the hydroxyl radicals generated (Yang et al., 2013). 

As shown in Figure 5, in this study, HBT addition consistently improved the removal of (R)-

profens: an improvement of 10 to over 30% was achieved (p < 0.05, Table 1). However, HBT 

addition had no effect on the chiral inversion of (R)- profens. Apparently, the radicals which are 

produced via oxidation of HBT by laccase could easily attack the (R)-enantiomers. Indeed 

Tanaka et al. (2001) reported that the addition of mediator hydroquinone to a reactor containing 

the yeast Trichosporon cutaneum was effective for the degradation of (R)-ibuprofen and the 

repression of (S)-ibuprofen degradation. Tanaka et al. (2001) explained that hydroquinone may 

have had inhibited mono- or dioxygenase enzymes which were essential for initial degradation of 

(S)-ibuprofen.   

[FIGURE 5] 

 [TABLE 1] 

In this study, except for (S)-naproxen, the removal of (S)-profens remained unaffected by HBT 

addition. Additionally, HBT addition showed negligible impact on the conversion of (S)- to (R)-

profens.  This observation indicates that with HBT addition, degradation to other metabolites 

proceeds preferentially over enantiomeric inversion. This is probably because hydroxyl radicals 

generated by the laccase-HBT system promoted profen degradation.   

It is noteworthy that operating parameters such as pH, enzyme loading, temperature, profens 

concentrations, and the presence of wastewater-derived inhibitory compounds would have 

impact on the performance of the EMBR system. The effects of these parameters on the 

enzymatic degradation of micropollutants have been generally studied (Lloret et al., 2010; Wen 

et al., 2010; Zhang & Geißen, 2010) . However, there has been no study about the impact of 

these parameters on the enzymatic degradation of profens at enantiomeric level. This is the first 

study on the enzymatic chiral inversion and further transformation of pharmaceuticals in water. 

Future studies specifically focusing on the impact of relevant operating parameters on EMBR 

performance are recommended.  

4. Conclusion 

Enantiomeric inversion and further degradation of profens by an EMBR was investigated for the 

first time. Bidirectional inversion of the chiral pharmaceuticals, particularly for naproxen was 

observed. Overall profen degradation was non-enantioselective, with high and consistent 

removal of both (R)- and (S)-ibuprofen but relatively lower levels of removal of the enantiomers 

of naproxen and ketoprofen. The influence of redox mediator on the enzymatic degradation of 

some profens appeared to be enantioselective. The addition of redox mediator promoted the 

degradation of (R)-profens mainly, while showing no impact on chiral inversion.  
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List of figures: 

Figure 1: Removal of (R)- and (S)-profens and enantiomeric fraction (EF) of profens following 

laccase treatment over 8 h in batch test conditions. The error bars represent the standard 

deviation (n=10). 

Figure 2: Concentration of the enantiomers and enantiomeric fraction (EF) after treatment of 

enantiomerically pure and racemic profen solutions with laccase in batch tests at different 

incubation time. Change in EF in the racemic naproxen solution is notable. The error bars 

represent the standard deviation (n=10). 

Figure 3: Removal efficiency of the profens by EMBR. EMBRs were fed with (R)- and (S)-

profens separately and operated at a hydraulic retention time of 8 h. The error bars represent the 

standard deviation (n=10). 

Figure 4: The concentration of (R)- and (S)-enantiomers in the EMBR feed and permeate, and 

enantiomeric fractions (EF) of the profens in the permeate, showing chiral conversion.  For the 

EMBR receiving (R)-profens, the EF was calculated by (R)/[(R) + (S)] and the EF in the influent 

was 0.99 ± 0.01 (n=10). For the EMBR receiving (S)-profens, the EF was calculated by (S)/[(R) 

+ (S)] and the EF in the influent was 0.99 ± 0.01 (n=10). 

Figure 5: The concentration of (R)- and (S)-profens in feed and permeate from separate EMBR 

experiments with and without redox-mediator (i.e., HBT) addition. The error bars represent the 

standard deviation (n=10). NQ: non-quantifiable. 
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Figure 1: Removal of (R)- and (S)-profens and enantiomeric fraction (EF) of profens following 

laccase treatment over 8 h in batch test conditions. The error bars represent the standard 

deviation (n=10). 
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Figure 2: Concentration of the enantiomers and enantiomeric fraction (EF) after treatment of 

enantiomerically pure and racemic profen solutions with laccase in batch tests at different 

incubation time. Change in EF in the racemic naproxen solution is notable. The error bars 

represent the standard deviation (n=10). 
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Figure 3: Removal efficiency of the profens by EMBR. EMBRs were fed with (R)- and (S)-

profens separately and operated at a hydraulic retention time of 8 h. The error bars represent the 

standard deviation (n=10). 
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Figure 4: The concentration of (R)- and (S)-enantiomers in the EMBR feed and permeate, and 

enantiomeric fractions (EF) of the profens in the permeate, showing chiral conversion.  For the 

EMBR receiving (R)-profens, the EF was calculated by (R)/[(R) + (S)] and the EF in the influent 

was 0.99 ± 0.01 (n=10). For the EMBR receiving (S)-profens, the EF was calculated by (S)/[(R) 

+ (S)] and the EF in the influent was 0.99 ± 0.01 (n=10). 
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Figure 5: The concentration of (R)- and (S)-profens in feed and permeate from separate EMBR 

experiments with and without redox-mediator (i.e., HBT) addition. The error bars represent the 

standard deviation (n=10). NQ: non-quantifiable. 
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Table 1: Statistical analysis of removal data  

 

Compounds 

EMBR-(R) profens 

vs 

EMBR-(S) profens 

EMBR-(R) profens with  

vs 

without HBT 

EMBR-(S) profens with  

vs 

without HBT 

 P value P value P value 

Ibuprofen 0.492 0.008 0.105 

Naproxen 0.930 0.027 0.479 

Ketoprofen 0.652 0.023 NQ 
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Table S1: Physicochemical properties of the selected pharmaceuticals 

  Molecular structure 

Compounds 

 

Molecular 

weight 

(g/mol) 

(R)-enantiomer (S)-enantiomer 

Ibuprofen 

(C13H18O2) 

(5687-27-1) 

206.28 

 

COOH

HH3C

H3C

CH3  

Naproxen 

(C14H14O3) 

(22204-53-1) 

230.26 

  

Ketoprofen 

(C16H14O3) 

(22071-15-4) 

254.28 
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Figure S2: Schematic of an enzymatic membrane reactor utilized in this study.  
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