156 research outputs found

    A STUDY ON POWER OUTPUT OF HORIZONTAL-AXIS WIND TURBINES UNDER RAIN

    Get PDF
    The power of the wind turbine are significantly affected by the air conditions of the operating environment. Rain is a widespread phenomenon in many parts of the world especially in Vietnam, so exploring its effect on the power of wind turbines will provide valuable insights into the design of a new wind tower. In this paper, a method and a model is developed to estimate the effect of precipitation by simulating the actual physical processes of the rain drops forming on the surface of the blades of horizontal-axis wind turbines (HAWT), thereby determining optimal wetness, then power and performance respectively. Consequently, it makes a contribution to operation and control strategies for horizontal-axis wind turbines

    Topological Lifshitz phase transition in effective model of QCD with chiral symmetry non-restoration

    Get PDF
    The topological Lifshitz phase transition is studied systematically within an effective model of QCD, in which the chiral symmetry, broken at zero temperature, is not restored at high temperature and/or baryon chemical potential. It is found that during phase transition the quark system undergoes a first-order transition from low density fully-gapped state to high density state with Fermi sphere which is protected by momentum-space topology. The Lifshitz phase diagram in the plane of temperature and baryon chemical potential is established. The critical behaviors of various equations of state are determined.Comment: 8 pages, 10 figure

    Cost optimization of two-stage helical gearboxes with second stage double gear-sets

    Get PDF
    In practice, the cost of a gearbox plays a very important role in the trade. Therefore, reducing the cost of gearboxes is an important task not only when manufacturing the gearboxes but also when designing them. In order to reduce the cost of a gearbox, there are many solutions in which determining the optimal partial gear ratios of a gearbox is an effective measure. This is because it not only the size, the mass but also the cost of a gearbox depends greatly on the partial gear ratios. This work presents a method for calculating the cost function of two-stage helical gearboxes with second-stage double gear-sets based on the mass of the components that construct the gearbox. The cost objective function is minimized to achieve the optimal transmission ratios. Furthermore, screening experiments are carried out with nine important input parameters that have significant effects on the optimum transmission ratio of the second stage. These parameters are the total gearbox ratio, the coefficient of wheel face width of the first stage, coefficient of wheel face width of the second stage, the allowable contact stress of the first stage, the allowable contact stress of the second stage, the output torque, the cost of gearbox housing, the cost of gears, and the shaft cost. The experimental results of were analysed by using the Analysis of Variance (ANOVA) method with the help of Minitab 19 software. The results demonstrate that the effective weight of the input parameters and their interactions on the output response was investigated. Also, a regression model for computing the optimal transmission ratio of the second stage was proposed. This brings significance not only in the design process but also in manufacturing since the gearbox cost can decreas

    Application of the improved four-node element MISQ24 for geometrically nonlinear analysis of plate/shell structures

    Get PDF
    In this paper the smoothed strain based four-node flat element MISQ24 with driiling degrees of freedom is extended for geometrically nonlinear analysis of plate and shell structures. The von-Karman's large deflection theory and the Total Lagrangian (TL) approach are employed in the formulation of the elements to describe small strain geometric nonlinearity with large deformations using the first-order shear deformation theory (FSDT). The predictive capability of the present models is demonstrated by comparing the present results with analytical/experimental and other numerical solutions available in the literature. Numerical examples show that the presented formulations can prevent loss of accuracy in severely distorted meshes, and therefore, are superior to those of other quadrilateral elements with inplanes rotations

    VIBRATION ANALYSIS OF CROSS-PLY LAMINATED COMPOSITE DOUBLY CURVED SHALLOW SHELL PANELS WITH STIFFENERS

    Get PDF
    In this paper, the analytical solution for the cross-ply laminated composite double curved shell panels with stiffeners is presented. Based on the smeared stiffeners technique and the first shear deformation theory (FSDT), the motion equations are derived by applying the Hamilton’s principle. The Navier’s solution for the simply supported boundary condition for all edges is presented. The numerical results are verified with the known results in the literature. The effects of the number of stiffeners, dimensions of stiffeners, and lamination scheme of cross-ply laminated composite doubly curved shell panels on the natural fundamental frequencies are investigated

    Trajectory Tracking Control Design for Dual-Arm Robots Using Dynamic Surface Controller

    Get PDF
    This paper presents a dynamic surface controller (DSC) for dual-arm robots (DAR) tracking desired trajectories. The DSC algorithm is based on backstepping technique and multiple sliding surface control principle, but with an important addition. In the design of DSC, low-pass filters are included which prevent the complexity in computing due to the “explosion of terms”, i.e. the number of terms in the control law rapidly gets out of hand. Therefore, a controller constructed from this algorithm is simulated on a four degrees of freedom (DOF) dual-arm robot with a complex kinetic dynamic model. Moreover, the stability of the control system is proved by using Lyapunov theory. The simulation results show the effectiveness of the controller which provide precise tracking performance of the manipulator

    Nuclear Symmetry Energy in Chiral Model of Nuclear Matter

    Get PDF
    The physical properties of asymmetric nuclear matter are studied in the Extended Nambou-Jona-Lasinio (ENJL) model formulated directly in the nucleon degrees of freedom. It results that the density dependence of the nuclear symmetry energy and its related quantities are basically in good agreement with data of recent analyses

    Delay factors in the construction of irrigation and hydropower projects in Vietnam

    Get PDF
    Irrigation and hydropower are among the most important sectors in the construction industry that propel the economic needs of a developing country like Vietnam. The construction of these projects often suffers from severe delays, leading to financial losses and other negative impacts on the economy. This paper aims to determine delay factors in the construction of these projects. Among many, 39 most important candidates of delay causes were identified from the literature review. Further surveys on project participants were conducted for the severity of these causes. An exploratory factor analysis was utilized to identify latent factors that cause delays in construction projects. The analysis result categorized a few groups of factors such as abnormal factors on the construction site (e.g., labor accidents, hydrology, water flow, extreme weather) and technical factors related to the construction contractor (e.g., unsuitable schedule, outdated construction technology, unprofessional workers) that have the greatest impact on the delay in construction of irrigation and hydropower projects in Vietnam. These findings contribute to the body of knowledge of project management and risk management, hence an improvement in the efficiency of the project sectors’ performance

    Synergic Effect of CaI and LiI on Ionic Conductivity of Solution-Based Synthesized Li7P3S11 Solid Electrolyte

    Get PDF
    Li7P3S11 doped with CaX2 (X = Cl, Br, I) and LiI solid electrolytes were successfully prepared by liquid-phase synthesis using acetonitrile as the reaction medium. Their structure was investigated using XRD, Raman spectroscopy and SEM-EDS. The data obtained from complex impedance spectroscopy was analyzed to study the ionic conductivity and relaxation dynamics in the prepared samples. The XRD results suggested that a part of CaX2 and LiI incorporated into the structure of Li7P3S11, while the remaining part existed at the grain boundary of the Li7P3S11 particle. The Raman peak positions of PS43- and P2S74- ions in samples 90Li7P3S11-5CaI2 and 90Li7P3S11-5CaI2-5LiI had shifted as compared to the Li7P3S11 sample, showing that CaI2 addition affected the vibration of PS43- and P2S74- ions. EDS results indicated that CaI2 and LiI were well dispersed in the prepared powder sample. The ionic conductivity at 25 °C of sample 90Li7P3S11-5CaI2-5LiI reached a very high value of 3.1 mS cm-1 due to the improvement of Li-ion movement at the grain boundary and structural improvement upon CaI2 and LiI doping. This study encouraged the application of Li7P3S11 in all-solid-state Li-ion batteries
    corecore