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ABSTRACT 
In this paper the smoothed strain based four-node flat element MISQ24 with driiling degrees of 

freedom is extended for geometrically nonlinear analysis of plate and shell structures. The von-Karman's 
large deflection theory and the Total Lagrangian (TL) approach are employed in the formulation of the 
elements to describe small strain geometric nonlinearity with large deformations using the first-order 
shear deformation theory (FSDT). The predictive capability of the present models is demonstrated by 
comparing the present results with analytical/experimental and other numerical solutions available in the 
literature. Numerical examples show that the presented formulations can prevent loss of accuracy in 
severely distorted meshes, and therefore, are superior to those of other quadrilateral elements with in-
planes rotations. 
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1. Introduction 
The wide application of plate/shell 

structures in engineering practice has 
caught the interests of many researchers in 
the fields of developing simple and 
efficient plate/shell elements for 
geometrically nonlinear analysis of these 
structures. The accurate prediction of 
structural response characteristics in the 
large deformation regime therefore 
becomes more important considerations of 
engineering design.  

Geometrically nonlinear analysis is 
usually performed iteratively for each load 
increment with subsequent updating of 
coordinates and internal stresses to obtain 
the equilibrium in the deformed 
configuration. As a result, geometrically 
nonlinear analysis is considered as a 

complex issue that requires efficient and 
reliable advanced numerical methods. 
Numerical methods such as finite element 
methods have been developed and widely 
used for nonlinear analysis of these 
structures with complex geometry and 
loading history (Yang  et al. (2000), Gal 
and Levy (2006)). Among different kinds 
of shell finite elements such as flat shell 
elements, curved shell elements and 
degenerated shell elements, the flat shell 
elements have been often and widely used 
owing to the ease to mix them with other 
types of element, the simplicity in their 
formulation and the effectiveness in 
performing computations (Yang  et al. 
(2000), Gal and Levy (2006), Choi and Lee 
(2003), Pimpinelli (2004)). 

The aim of this work is to further 
develop the flat element MISQ24, whose 
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performances in linear analysis have 
already been verified and demonstrated in 
references (Nguyen-Van et al. (2009, 
2011)) for geometrically nonlinear analysis 
of composite plate and shell structures. The 
von-Karman's large deflection theory and 
the total Lagrangian (TL) approach are 
utilized in the small strain-large 
deformation formulation and then the 
solution of the nonlinear equilibrium 
equations is obtained by the arc-length 
method. With the aid of the assumed strain 
smoothing technique, the evaluations of the 
membrane, bending and geometric 
stiffness matrices are obtained via 
integration on the boundary of smoothing 
cells. This boundary integration contributes 
to the preservation of high accuracy of the 
method when highly distorted elements or 
coarse meshes are used. Numerical 
examples show that the present element is 
free from locking and exhibits good 
accuracy and stability in capturing 
geometric nonlinearity in plate/shell 
structures. 

This paper is outlined as follows. A 
brief review of the FSDT finite element 
formulations for geometrically nonlinear 
analysis is first introduced. This is 
followed by the description of assumed 
strain smoothing approach for the 
generalized strain and the tangent stiffness 
matrix of the element are derived in 
Section 2. Some numerical examples are 
reported in Section 3 in order to verify and 
assess the performance of the proposed 
element. Finally, some concluding remarks 
are presented in Section 4.  

2. Geometric nonlinear 
formulations of the MISQ24 element 

2.1. The first-order shear 
deformation theory (FSDT) for nonlinear 
analysis 

Based on the FSDT, the plate 
kinematics is governed by the midplane 
displacements  0 0 0u , v , w  and the rotations 

x , y  of the normal to the mid-surface 
about y− and x−axis, respectively (Reddy 
(2004)) 
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For large deformation analysis, the in-plane vector of Green-Lagrangian strain in a 
plate element is 
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Substituting Equation (1) into Equation (2) and considering the von Karman’s large 
deflection assumption, the in-plane strain vector can be rewritten as 

 m bz    , (3) 
in which  
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The transverse shear strain vector is given as 

 xz x ,x

yz y ,y

w
w
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The constitutive relationship of the plate can be expressed as 

 
* * * Dσ ε , (7) 
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and N = [Nx Ny Nxy] is the in-plane traction 
resultant, T = [Qx Qy] is the out-of-plane 
traction resultant and M = [Mx My Mxy] is 
the out-of-plane moment resultant. Dm is 
the extensional stiffness, Db is the bending 
stiffness and Ds is the transverse shear 
stiffness, which are given in detail in 
Reddy (2004). 

2.2. Strain smoothing formulations for 

geometric nonlinear analysis 
As shown in Figure 1, a quadrilateral 

element domain CΩ  is further divided into 
nc smoothing cells. The generalized strain 
field is smoothed by a weighted average of 
the original generalized strains using the 
strain smoothing operation for each 
smoothing cell as follows. 
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 (11) 
where L

mε , NL
mε , bε are the smoothed (averaged) strains and Ac is the area of the smoothing 

cell CΩ . 
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Figure 1.Subdivision of an element into nc smoothing cells and the values of shape 

functions at nodes in the format (N1,N2,N3,N4) 
 
Introducing the approximation of the 

linear membrane strain by the quadrilateral 
finite element using Allman-type 
interpolation functions with drilling 
degrees of freedom (Ibrahimbegovic et al. 

(1990)) and applying the divergence 
theorem, the smoothed membrane strain 
can be obtained as 
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where 

 

 
0

1 0
C

i x i x

i yi ymi C
C

i y i x i y i x

N n Nx n
dNy nN n

A
Ny nNx nN nN n



 
 

 
  

B x

 (13) 
 
in which Nxi, Nyi are Allman’s 
incompatible shape functions defined in 
Ibrahimbegovic et al. (1990) and nx, ny are 
the components of the outward unit vector 
n normal to the boundary ΓC . 

Applying Gauss integration along 4 
segments of the boundary C  of the 
smoothing domain C , the above equation 
can be rewritten in algebraic form as 
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(14) 
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where nG  is the number of Gauss 
integration points, bnx the Gauss point and 

nw the corresponding weighting 
coefficients. The first term in Equation 
(14), which relates to the in-plane 
translations (approximated by bilinear 
shape functions), is evaluated by one 

Gauss point  1nG  . The second term, 
associated with the in-plane rotations 
(approximated by quadratic shape 
functions), is computed using two Gauss 
points  2nG  . 

In the similar way, the smoothed 
nonlinear membrane strain over the 
element domain CΩ  can be written as 

 

4
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 (15) 
where NL

miB is the smoothed nonlinear gradient matrix in the smoothing cell given as 
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and iw is the deflection at the node i  of the element. 

The smoothed bending strain over the element domain CΩ  is expressed as 
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The shear strain is expressed by independent interpolation fields in the natural 

coordinate systems as (Bathe and Dvorkin (1985)) 
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where J  is the Jacobian matrix and the midside nodes A, B, C, D are shown in Figure 1. 
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Expressing A
 , C

  and B
 , D

 in terms of the discretized field q, we obtain the shear 
gradient matrix 
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Finally, the element tangent stiffness matrix TK  is modified as 
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in which the positive penalty parameter 
G   and the number of smoothing cells nc 

= 2 are chosen in this study. 
The internal forces at the time t 

computed from the stress state in the 
structures can be rewritten as 

 tt *
L NL d ,


F = B + B     (29) 

in which the stress resultant after the thi  
iteration is 

1
t * t *t *

i i ,  σ σ σ  (30) 
Finally, the nonlinear equations can be 

rewritten as 
t t t t

T
 K q P - F  (31) 

3. Numerical results and Discussions 

In this section, we will test and assess 
the MISQ24 element through numerical 
examples. In all examples, the arc-length 

method and automatic incremental 
algorithm is used to solve the nonlinear 
finite element equations. The convergence 
tolerance of displacement is taken to be 
0.001. Unless other specified, the shear 
correction factors are equal to 5/6, and SI 
units are used. 

3.1. A clamped skew plate 
The bending behaviour of a skew plate 

is often considered as a corner stress 
concentration problem due to a strong 
singularity in bending moments at the 
obtuse vertex. It is often avoided for 
nonlinear analyses of plate bending 
problems. Therefore, this section deals 
with the large deflection of clamped skew 
plates with different skew angles α from 00 
to 600 as shown in Figure 2. The geometric 
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and material parameters are as follows: a = 
1.5b; h/a = 0.02; E = 2 × 105; ν = 0.3;  
D = Eh3/(12(1−ν)). Two types of loading, 
namely a uniformly distributed load and a 
concentrated load are examined in this 
study. The full plate is modelled using 8×8 
elements with regular as well as highly 
distorted shapes as shown in Figure 2. 

The accuracy of the present solutions is 
investigated for both types of mesh with 
different skew angles α = 00, 300, 500, 600. 
The load-deflection curves obtained by the 
present elements are plotted and compared 
with theoretical solutions of Chia (1980) 
and the hybrid mixed element’s results of 
Duan and Mahendran (2003) as shown in 
Figure 3a-b.  

It is followed from Figure 3a that the 
performance of the present elements are in 
good agreement with the theoretical 
solution for both types of mesh and the 

present performance is better than those of 
the hybrid mixed element for the cases of 
skew angles α = 300 and 600 when the plate 
is subjected to uniform load. 

For the skew plates subjected to a 
point load, there is no analytical solution 
and the present results are compared very 
favorable with the solutions using hybrid 
mixed element of Duan and Mahendran 
(2003) for both types of mesh as can be 
seen in Figure 3b. Numerical results also 
show that the maximum central deflection 
decreases as the skew angle of the plate 
increases and the load-deflection curve of 
the plate with 60 skew angle approximates 
to a straight line. Therefore, the rigidity of 
skew plates can increase by increasing the 
skew angle and the overall strength of 
structures will improve. 

 

 

 

 

Figure 2. Meshes of a clamped skew plate: (a) 8×8 regular mesh; (b) 8×8 irregular 
mesh with α = 00 ; (c) 8×8 irregular mesh with α = 300 ; (d) 8×8 irregular mesh with 

α = 600 

The effect of span-to-thickness (a/h) 
ratios on the nonlinear bending behaviour 
of the above clamped skew plate is also 
studied for three values, namely a/h = 10, 
100, 1000 using a distorted mesh of 8×8 

MISQ24 elements. Figure 4a illustrates the 
load–deflection curves for the case of the 
uniformly distributed load while the load–
deflection curves for the concentrated load 
are displayed in Figure 4b. It is found that 
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the effect of the span-to-thickness ratio on 
the central deflections has no influence for 
thin skew plates with a/h > 100 in both 
cases of loading. For the plates under the 
distributed load, the effect of the span-to-
thickness ratio has a minor effect on the 
deflection when skew angle α < 300 while 

it have a greater effect for any skew angle 
α from 00 to 600 in the case of the point 
load. It is also observed that the degree of 
nonlinearity in the thick 600 skew plate is 
more pronounced than in the thin plate 
owing to the dominance of transverse shear 
deformation for both cases of loading.

 

 
(a) 

 
(b) 

Figure 3. Load-deflection responses of the clamped skew plate: (a) under a 
uniform load and (b) under a point load 

 

 
(a) 

 
(b) 

Figure 4. Effect of span-to-thickness ratios to load-deflection responses of the 
clamped skew plate: (a) under a uniform load and (b) under a point load 

3.2. A hinged cylindrical shell under 
point load 

This section is concerned with the 
effect of thickness-to-length ratios effect 
on the nonlinear bending behaviour of a 
cylindrical shell subjected to a 
concentrated central load as shown in the 

Figure 5. Two longitudial edges of the 
shell are hinged, whereas the curved edges 
are free. The length of the shell panel is L 
= 508 mm with a shell radius R = 2540 mm 
and an open angle 2 = 0.2 rad. The 
material properties are: E = 3.10275 
kN/mm2 , ν = 0.3. Two different thickness, 
namely h = 12.7 mm and h = 6.35 mm are 
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examined in this study. Owing to 
symmetry, only a quadrant of shell is 
analysed with a 6 × 6 uniform mesh and 
distorted mesh as shown in Figure 5.  

Figure 6a illustrates the nonlinear 
bending response of the shell panel with 
the thickness h = 12.7 mm. The nonlinear 

solutions given by Sabir and Lock (1973) , 
Crisfield (1979) and Sze et al. (2004) are 
also plotted in this figure for comparison. 
A snap-through behaviour is observed for 
this shell panel. It can be seen that five 
curves agree well together with the same 
limit points. 

 
(a) 

 

 
 

(b) 

 

 
 

(c) 

Figure 5. A hinged cylindrical shell: (a) geometry and boudary conditions; 
(b) 6 × 6 regular mesh and (c) 6 × 6 irregular mesh 

Figure 6b shows the load-deflection 
relationship curves for the shell panel with 
the thickness h = 6.35 mm. A snap-back 
phenomenon is noticed for this shell panel. 
The present solutions for both types of 
mesh are compared with the results 
computed by Sze et al. (2004). It is clearly 
investigated that the present method has 

successfully captured the negative load 
limit point and the present results agree 
well with those given in literature with 
only small disparities. These differences 
may be due to the coarse mesh and the 
solution strategies. 

 

 
(a) 

 
(b) 

Figure 6. Load-deflection responses of the hinged cylindrical shell:  
(a) h = 12.7 mm; (b) h = 6.35 mm 
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4. Conclusion 

In this paper, the MISQ24 element is 
further developed and successfully applied 
to geometrically nonlinear analysis of plate 
and shell structures in the framework of the 
FSDT. Numerical examples have been 
carried out and the present element is 
found to yield satisfactory results in 
comparison with other available finite 
element solutions as well as experimental 

results. It is observed that the present 
approach remains accurate even with 
coarse meshes or badly-shaped elements. 
In addition, the present element has the 
advantage of being simple in formulation 
and ready for use in analysis of both plate 
and shell structures with a minimal amount 
of effort to implement. The success of the 
present flat/shell element provides a further 
demonstration of efficient flat quadrilateral 
elements for nonlinear analysis. 
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