323 research outputs found

    Researchers who lead the trends

    Get PDF
    Xuan-Hung Doan, Phuong-Tram T. Nguyen, Viet-Phuong La, Hong-Kong T. Nguyen (2019). Chapter 5. Researchers who lead the trends. In Quan-Hoang Vuong, Trung Tran (Eds.), The Vietnamese Social Sciences at a Fork in the Road (pp. 98–120). Warsaw, Poland: De Gruyter. DOI:10.2478/9783110686081-010 Online ISBN: 9783110686081 © 2019 Sciend

    EMI in Vietnam: What High School Teachers Think and Do

    Get PDF
    The current case study was driven by a recent policy on using English as a medium of instruction (EMI) in the mainstream school system in Vietnam. It aimed to explore what science teachers believed and reported doing about EMI in teaching science subjects in the high school context. Nine EMI teachers of different science subjects at a specialized high school in the Mekong Delta of Vietnam participated in a semi-structured interview. Thematic analysis revealed the perceived positive impacts on teachers’ and students’ English proficiency, and negative influences on science content coverage. In practice, the teachers reported a focus on simple contents, explaining specialized terminologies and key concepts as the input. They mainly employed a lecture style and teacher initiation-student response interaction, switching between English and Vietnamese during their lessons. These results imply that EMI across the curriculum has the potential to improve English proficiency of students, but the EMI policy needs to consider its transparency in goals and communication to stakeholders especially teachers and school managers.  &nbsp

    The application of double-layer remote phosphor structures in increasing WLEDs color rendering index and lumen output

    Get PDF
    The remote phosphor structure often has inferior color quality but better luminous flux in than conformal or in-cup configurations. Therefore, numerous researches study remote phosphor structure for methods to enhance it chromatic quality. This study introduces the use of dual-layer remote phosphor structure in WLEDs with identical structure but at different color temperature, 6600K and 7700K, to demonstrate their effect on quality indicators. The concept is placing a green phosphor layer (Ce,Tb)MgAl11O19:Ce:Tb or a red phosphor layer MgSr3Si2O8:Eu2+,Mn2+ on the layer of yellow-emitting phosphor YAG:Ce3+ and find the suitable concentration of the additional phosphor to create the best color quality. The results showed that the increase of CRI and CQS are affected by MgSr3Si2O8:Eu2+,Mn2+, in particular, the higher the concentration of red phosphor gets the better CRI and CQS because the emitted red light in enhanced. The green phosphor layer (Ce,Tb)MgAl11O19:Ce:Tb, on the other hand, is beneficial for the luminous flux. The concentration of MgSr3Si2O8:Eu2+,Mn2+ and (Ce,Tb)MgAl11O19:Ce:Tb, however, need to be adjusted properly to avoid decreasing the luminous flux due to overgrowth. The Mie scattering theory and Beer’s law are the verification tools for these conclusions, which gives them the credibility to be applied in producing better quality WLEDs

    Na3Ce(PO4)2:Tb3+ and Na(Mg2–xMnX)LiSi4O10F2:Mn phosphors: a suitable selection for enhancing color quality and luminous flux of remote white light-emitting diodes

    Get PDF
    This study proposed the TRP, a remote phosphor structure that has 3 phosphor layers, to ehance the chromatic quality and lumen output for white light-emitting diodes devices (WLEDs). The arrangment of phosphor layers is yellow YAG:Ce3+ phosphor, green Na3Ce(PO4)2:Tb3+ phosphor, and red Na(Mg2–xMnX)LiSi4O10F2:Mn phosphor from bottom to top. Red Na(Mg2–xMnX)LiSi4O10F2:Mn phosphor is used for the red light component to boost color rendering index (CRI). The green layer Na3Ce(PO4)2:Tb3+ phosphor is utilized for the green light component to produce higher luminous flux (LF). With the addition of red and green phosphor, the yellow YAG:Ce3+ concentration must decrease to maintain the 6000 K color temperature. The research results show that red phosphor Na(Mg2–xMnX)LiSi4O10F2:Mn concentration is beneficial for CRI, while green phosphor Na3Ce(PO4)2:Tb3+ is detrimental to CRI. Morever, CQS reaction with red and green phosphor is also studied, which show notable improvement when Na(Mg2–xMnX)LiSi4O10F2:Mn concentration is from 10%-14%, regardless of Na3Ce(PO4)2:Tb3+. The luminous flux (LF) can also increase for more than 40% with the reduced light loss and added green phosphor. Research results are valuable references for producers to enhance the color quality and the light emission of WLEDs

    SrBaSiO4:Eu2+ phosphor: a novel application for improving the luminous flux and color quality of multi-chip white LED lamps

    Get PDF
    This paper described in detail the chromatic homogeneity and luminous flux influences in producing better quality white LED devices with various phosphor layers (MCW-LEDs). The method is to let Eu2+-activated strontium–barium silicate (SrBaSiO4:Eu2+) mixed with their phosphor compounding, which results in notable impact on lighting performance. The increase in concentration of yellow-green-emitting SrBaSiO4:Eu2+ phosphor also promotes the color performance and lumen output of WLED devices at high correlated color temperature around 8500K. This is the first time this approach is applied and it results can be utilized for better understanding of optical properties interaction with phosphor materials. Although SrBaSiO4:Eu2+ receives many positive responses, we still need to limit it concentration for high SrBaSiO4:Eu2+ concentration is detrimental to CQS. The appropriate choice of concentration and size of SrBaSiO4:Eu2+ is the principal factor to decide the performance of MCW-LEDs

    The effectiveness of MgCeAl11O19:Tb3+ phosphor in enhancing the luminous efficacy and color quality of multi-chip white LEDs

    Get PDF
    In this research paper, we introduced yellow-green MgCeAl11O19:Tb3+ asa new phosphor ingredient to adapt to the quality requirements onthe chromatic homogeneity and emitted luminous flux of modern multi-chip white LED lights (MCW-LEDs). The results from experiments and simulation show that employing MgCeAl11O19:Tb3+ phosphor can lead to much better optical properties and therefore is a perfect supporting material to achieve the goals of the research. When the MgCeAl11O19:Tb3+ phosphor is added into the phosphorus composite which already contains YAG: Ce3+ particles, and the silicone glue, it affects the optical properties significantly. In other words, the concentration of this phosphor can determine the efficiency of lumen output and chromatic homogeneity of WLEDs. In specific, as the concentration of MgCeAl11O19:Tb3+ go up, the luminous yield will increase accordingly, though there is an insignificant decrease in CQS. Moreover, if the MgCeAl11O19:Tb3+ concentration reduce a little bit, it is possible to better the correlated color temperature uniformity and lumen efficacy of LED packages. In addition, the Mie scattering theory, Monte Carlo simulation and LightTools 8.3.2 software are employed to analyze and simulate the LED packages’ structure as well as the phosphor compound

    The options in remote phosphor structure for better white LEDs color quality

    Get PDF
    The WLEDs configuration with remote phosphor layers has higher luminescent performance than WLEDs with dispense coating or conformal coating and is applied for many modern devices. However, managing the chromatic performance of lighting structure with remote phosphor materials is a challenging objective that demands more research. This has inspired the usage of multi phosphor configurations with distance in between the layers to improve color quality. The results of this manuscript can support the manufacturers in choosing the optimal configuration for optical performance in LEDs devices with more than one phosphor material. The simulated model used in the experments is 6500 K CCT WLEDs, which results show the triple-layers structure is more favorable in terms of color quality and light output. Besides, a notable reduction occurs in color deviation means that chromatic stability is also enhanced in WLEDs with three phosphor layers. Through experimental results, which were confirmed by the Mie-scattering theory, this research offers valuable approach and details to produce better WLEDs

    LaSiO3Cl:Ce3+,Tb3+ and Mg2TiO4:Mn4+: quantum dot phosphors for improving the optical properties of WLEDs

    Get PDF
    In this research, we focus on the solutions to enhance the lighting properties as well as the heat regulation of the white light-emitting diodes (WLEDs) with conventional phosphor and quantum dots (QDs). Although receiving lots of attention for being an innovative lighting solution with good color rendering index, the potentials of WLEDs conjugated with quantum dots (QDS), especially the QDs-phosphor mixed nanocomposites ones, are restrained due to the lacking performance in the aspects mentioned above. The crucial requirement to produce better WLEDs is finding solutions that improve the lacking aspects, therefore, through observing previous studies and applying advanced technique, this research suggest an effective and unique packaging configuration, in which the nanocomposites QDs-phosphor layer is set horizontally to the WLED. This novel packaging configuration allow WLED performance in terms of lighting and heating to reach it peaks. This is the first time four different types of WLEDs, single-layer phosphor, dual-layer remote phosphor with yellow-red and yellow-green, and triple-layer phosphor, were simulated, utilized and compared in one study to decide the best WLED configuration. The results show that the triple-layer phosphor configurations improve the color rendering ability and lumen output better than the other configurations

    Y2O3:Ho3+ and ZnO:Bi3+: a selection for enhancing color quality and luminous flux of WLEDs

    Get PDF
    As the luminescence industry develops, the white light light-emitting diode (LED) package with a single chip and a single phosphor although produces good luminous flux but has a poor color rendering index (CRI) can no longer fulfill the requirements of modern lighting applications. Therefore, this research is conducted to response to the urgent demands of improving other lighting qualities of WLED while maintaining high luminous efficiency. To achieve this target, we applied the new WLED package, which contains multi-chips and multi-phosphor layers, and have obtained outstanding results in both CRI and luminous efficacy. Two types of phosphor used in the WLED package are Y2O3:Ho3+ and ZnO:Bi3+. A color configuration model is also developed to adjust the shading of the white-light LED module. The results of this research show that the triple-layer phosphorhas the best performance when applied in a white-light LED package, which is demonstrated through better color quality, CRI and luminous efficacy, The manufacturers can rely on this research to produce the optimal-quality WLED, or WLED that is appropriate to their quality demands

    Improving color quality and luminous flux of white LED utilizing triple-layer remote phosphor structure

    Get PDF
    In this manuscript, we presented a research that enhance the performance of WLED using the multi-phosphor configuration. The phosphor layers in the research are separated from each other to achieved better luminous efficiency, however, it makes controlling color light quality more complex. Another issue is finding out the whether two layers of phosphor or three layers of phosphor is better in improving color quality. The research addressed this issue by analyzing the optical aspects of the respective WLEDs that employ these structure. The studied aspects are quality indicators such as luminous efficacy (LE), and color uniformity, color rendering index (CRI), color quality scale (CQS). The results of the experiments in this research, which come from the employment of WLEDs with 2 color temperatures 5600 K and 8500, suggest that WLED with three phosphor layers is better in CRI, CQS, LE. This type of phosphor structure also limits the color deviation significantly, thus, improves the color uniformity. This results is verifies with Mie theory, therefore, can be applied as reference or guideline for production of better WLED
    • …
    corecore