2,518 research outputs found

    Analysis of large databases in vascular surgery

    Get PDF
    Large databases can be a rich source of clinical and administrative information on broad populations. These datasets are characterized by demographic and clinical data for over 1000 patients from multiple institutions. Since they are often collected and funded for other purposes, their use for secondary analysis increases their utility at relatively low costs. Advantages of large databases as a source include the very large numbers of available patients and their related medical information. Disadvantages include lack of detailed clinical information and absence of causal descriptions. Researchers working with large databases should also be mindful of data structure design and inherent limitations to large databases, such as treatment bias and systemic sampling errors. Withstanding these limitations, several important studies have been published in vascular care using large databases. They represent timely, “real-world” analyses of questions that may be too difficult or costly to address using prospective randomized methods. Large databases will be an increasingly important analytical resource as we focus on improving national health care efficacy in the setting of limited resources

    The Calibration of AVHRR Visible Dual Gain using Meteosat-8 for NOAA-16 to 18

    Get PDF
    The NOAA AVHRR program has given the remote sensing community over 25 years of imager radiances to retrieve global cloud, vegetation, and aerosol properties. This dataset can be used for long-term climate research, if the AVHRR instrument is well calibrated. Unfortunately, the AVHRR instrument does not have onboard visible calibration and does degrade over time. Vicarious post-launch calibration is necessary to obtain cloud properties that are not biased over time. The recent AVHRR-3 instrument has a dual gain in the visible channels in order to achieve greater radiance resolution in the clear-sky. This has made vicarious calibration of the AVHRR-3 more difficult to unravel. Reference satellite radiances from well-calibrated instruments, usually equipped with solar diffusers, such as MODIS, have been used to successfully vicariously calibrate other visible instruments. Transfer of calibration from one satellite to another using co-angled, collocated, coincident radiances has been well validated. Terra or Aqua MODIS and AVHRR comparisons can only be performed over the poles during summer. However, geostationary satellites offer a transfer medium that captures both parts of the dual gain. This AVHRR-3 calibration strategy uses, calibrated with MODIS, Meteosat-8 radiances simultaneously to determine the dual gains using 50km regions. The dual gain coefficients will be compared with the nominal coefficients. Results will be shown for all visible channels for NOAA-17

    Prospective, randomized, multi-institutional clinical trial of a silver alginate dressing to reduce lower extremity vascular surgery wound complications

    Get PDF
    ObjectiveWound complications negatively affect outcomes of lower extremity arterial reconstruction. By way of an investigator initiated clinical trial, we tested the hypothesis that a silver-eluting alginate topical surgical dressing would lower wound complication rates in patients undergoing open arterial procedures in the lower extremity.MethodsThe study block-randomized 500 patients at three institutions to standard gauze or silver alginate dressings placed over incisions after leg arterial surgery. This original operating room dressing remained until gross soiling, clinical need to remove, or postoperative day 3, whichever was first. Subsequent care was at the provider's discretion. The primary end point was 30-day wound complication incidence generally based on National Surgical Quality Improvement Program guidelines. Demographic, clinical, quality of life, and economic end points were also collected. Wound closure was at the surgeon's discretion.ResultsParticipants (72% male) were 84% white, 45% were diabetic, 41% had critical limb ischemia, and 32% had claudication (with aneurysm, bypass revision, other). The overall 30-day wound complication incidence was 30%, with superficial surgical site infection as the most common. In intent-to-treat analysis, silver alginate had no effect on wound complications. Multivariable analysis showed that Coumadin (Bristol-Myers Squibb, Princeton, NJ; odds ratio [OR], 1.72; 95% confidence interval [CI], 1.03-2.87; P = .03), higher body mass index (OR, 1.05; 95% CI, 1.01-1.09; P = .01), and the use of no conduit/material (OR, 0.12; 95% CI, 0.82-3.59; P < .001) were independently associated with wound complications.ConclusionsThe incidence of wound complications remains high in contemporary open lower extremity arterial surgery. Under the study conditions, a silver-eluting alginate dressing showed no effect on the incidence of wound complications

    Comparison of TWP-ICE Satellite and Field Campaign Aircraft Derived Cloud Properties

    Get PDF
    Cloud and radiation products derived from the MTSAT-1R satellite have been developed for TWP-ICE. These include pixel-level, gridded, and ground site and aircraft matched. These products are available from the Langley website and the ARM data center. As shown in Figs 2, and 4-6, these products compare favorably with in-situ ground and aircraft based measurements. With additional quantitative validation these products can provide valuable information about tropical convection and its impact on the radiation budget and climate. As new algorithm improvements, such as multi-layer cloud detection, are implemented these products will be reprocessed and updated

    Geographic Variation Within the Military Health System

    Get PDF
    Background: This study seeks to quantify variation in healthcare utilization and per capita costs using system-defined geographic regions based on enrollee residence within the Military Health System (MHS). Methods: Data for fiscal years 2007 – 2010 were obtained from the Military Health System under a data sharing agreement with the Defense Health Agency (DHA). DHA manages all aspects of the Department of Defense Military Health System, including TRICARE. Adjusted rates were calculated for per capita costs and for two procedures with high interest to the MHS- back surgery and Cesarean sections for TRICARE Prime and Plus enrollees. Coefficients of variation (CoV) and interquartile ranges (IQR) were calculated and analyzed using residence catchment area as the geographic unit. Catchment areas anchored by a Military Treatment Facility (MTF) were compared to catchment areas not anchored by a MTF. Results: Variation, as measured by CoV, was 0.37 for back surgery and 0.13 for C-sections in FY 2010- comparable to rates documented in other healthcare systems. The 2010 CoV (and average cost) for per capita costs was 0.26 ($3,479.51). Procedure rates were generally lower and CoVs higher in regions anchored by a MTF compared with regions not anchored by a MTF, based on both system-wide comparisons and comparisons of neighboring areas. Conclusions: In spite of its centrally managed system and relatively healthy beneficiaries with very robust health benefits, the MHS is not immune to unexplained variation in utilization and cost of healthcare

    Applications for Near-Real Time Satellite Cloud and Radiation Products

    Get PDF
    At NASA Langley Research Center, a variety of cloud, clear-sky, and radiation products are being derived at different scales from regional to global using geostationary satellite (GEOSat) and lower Earth-orbiting (LEOSat) imager data. With growing availability, these products are becoming increasingly valuable for weather forecasting and nowcasting. These products include, but are not limited to, cloud-top and base heights, cloud water path and particle size, cloud temperature and phase, surface skin temperature and albedo, and top-of-atmosphere radiation budget. Some of these data products are currently assimilated operationally in a numerical weather prediction model. Others are used unofficially for nowcasting, while testing is underway for other applications. These applications include the use of cloud water path in an NWP model, cloud optical depth for detecting convective initiation in cirrus-filled skies, and aircraft icing condition diagnoses among others. This paper briefly describes a currently operating system that analyzes data from GEOSats around the globe (GOES, Meteosat, MTSAT, FY-2) and LEOSats (AVHRR and MODIS) and makes the products available in near-real time through a variety of media. Current potential future use of these products is discussed

    Tropospheric Airborne Meteorological Data and Reporting (TAMDAR) Icing Sensor Performance during the 2003/2004 Alliance Icing Research Study (AIRS II)

    Get PDF
    NASA Langley Research Center and its research partners from the University of North Dakota (UND) and the National Center for Atmospheric Research (NCAR) participated in the AIRS II campaign from November 17 to December 17, 2003. AIRS II provided the opportunity to compare TAMDAR in situ in-flight icing condition assessments with in situ data from the UND Citation II aircraft's Rosemont system. TAMDAR is designed to provide a general warning of ice accretion and to report it directly into the Meteorological Data Communications and Reporting System (MDCRS). In addition to evaluating TAMDAR with microphysical data obtained by the Citation II, this study also compares these data to the NWS operational in-flight icing Current Icing Potential (CIP) graphic product and with the NASA Advanced Satellite Aviation-weather Products (ASAP) Icing Severity product. The CIP and ASAP graphics are also examined in this study to provide a context for the Citation II's sorties in AIRS II

    Near-Real Time Cloud Retrievals from Operational and Research Meteorological Satellites

    Get PDF
    A set of cloud retrieval algorithms developed for CERES and applied to MODIS data have been adapted to analyze other satellite imager data in near-real time. The cloud products, including single-layer cloud amount, top and base height, optical depth, phase, effective particle size, and liquid and ice water paths, are being retrieved from GOES- 10/11/12, MTSAT-1R, FY-2C, and Meteosat imager data as well as from MODIS. A comprehensive system to normalize the calibrations to MODIS has been implemented to maximize consistency in the products across platforms. Estimates of surface and top-of-atmosphere broadband radiative fluxes are also provided. Multilayered cloud properties are retrieved from GOES-12, Meteosat, and MODIS data. Native pixel resolution analyses are performed over selected domains, while reduced sampling is used for full-disk retrievals. Tools have been developed for matching the pixel-level results with instrumented surface sites and active sensor satellites. The calibrations, methods, examples of the products, and comparisons with the ICESat GLAS lidar are discussed. These products are currently being used for aircraft icing diagnoses, numerical weather modeling assimilation, and atmospheric radiation research and have potential for use in many other applications
    corecore